2022年一次函数应用题的解题方法.pdf
《2022年一次函数应用题的解题方法.pdf》由会员分享,可在线阅读,更多相关《2022年一次函数应用题的解题方法.pdf(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、一次函数应用题的解题方法一. 使用直译法求解一次函数应用题所谓直译法就是将题中的关键语句“译”成代数式,然后找出函数关系、列出一次函数解析式,从而解决问题的方法。例题 1东风商场文具部的某种毛笔每支售价25 元,书法练习本每本售价5 元。该商场为促销制定了甲、乙两种优惠办法。甲:买 1 支毛笔就赠送1 本书法练习本;乙:按购买金额打9 折付款。某校书法兴趣小组打算购买这种毛笔10 支,这种书法练习本x(x=10) 本。(1)分别写出按甲、乙两种优惠办法实际付款金额y 甲(元)、 y 乙(元)与x 之间的函数关系式。(2)比较购买不同数量的书法练习本时,按哪种优惠办法付款最省钱。(3)如果商场允
2、许既可以选择一种优惠办法购买,也可以用两种优惠办法购买,请你就购买这种毛笔10 支和这种书法练习本60 本设计一种最省钱的购买方案。分析 :只需根据题意,按要求将文字语言翻译成符号语言,再列出一次函数关系式即可。解:( 1)y 甲=1025+5( x-10 )=5x+200(x=10)y 乙=1025+5x=+225( x=10)(2)由( 1)有: y 甲-y 乙=若 y 甲-y 乙=0 解得 x=50若 y 甲-y 乙0 解得 x50若 y 甲-y 乙0 解得 x50当购买50 本书法练习本时,按两种优惠办法购买实际付款一样多,即可任选一种优惠办法付款;当购买本数不小于10 且小于 50
3、时,选择甲种优惠办法付款省钱;当购买本数大于50 时,选择乙种优惠办法付款省钱。(3)设按甲种优惠办法购买a(0=a=10) 支毛笔,则获赠a 本书法练习本。则需要按乙种优惠办法购买10-a 支毛笔和 (60-a) 支书法练习本。总费用为y=25a+25精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 1 页,共 9 页 - - - - - - - - - - (10-a )+5( 60-a)=495-2a 。故当 a 最大(为10)时, y 最小。所以先按甲种优惠办法购买10 支毛笔得到10 本书法练习本
4、,再按乙种优惠办法购买50 本书法练习本,这样的购买方案最省钱。说明 :本题属于“计算、比较、择优”型,它运用了一次函数、方程、不等式等知识,解决了最优方案的设计问题。二. 使用列表法求解一次函数应用题列表法就是将题目中的各个量列成一个表格,从而理顺它们之间的数量关系,以便于从中找到函数关系的解题方法。例题 2某工厂现有甲种原料360kg,乙种原料290kg,计划利用这两种原料生产A、B两种产品,共50 件。已知:生产一件A 种产品需用甲种原料9kg、乙种原料3kg,可获利润 700 元;生产一件B种产品需用甲种原料4kg、乙种原料10kg,可获利润1200 元。(1)若安排 A、B两种产品的
5、生产,共有哪几种方案?请你设计出来。(2)设生产A、B 两种产品获得的总利润是y 元,其中一种产品的生产件数是x,试写出 y 与 x 之间的函数关系式,并利用函数的性质说明(1)中的哪种生产方案可以获得最大总利润。最大的总利润是多少?分析 :本题中共出现了9 个数据,其中涉及甲、乙两种原料的质量,生产A、B两种产品的总件数及两种产品所获得的利润等。为了清楚地整理题目所涉及的各种信息,我们可采用列表法。解:( 1)设安排生产A种产品 x 件,则生产B种产品是( 50-x )件产品每件产品需要甲种原料( kg)每件产品需要乙种原料( kg)每件产品利润(元)件数A93700 xB410120050
6、-x根据题意得:解不等式组,得30=X=32精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 2 页,共 9 页 - - - - - - - - - - 因为 x 是整数,所以x 只可取 30、31、32,相应的 (50-x) 的值是 20、19、18。所以,生产的方案有三种:生产A种产品 30 件, B 种产品 20 件;生产A种产品 31件, B种产品 19 件;生产A种产品 32 件, B种产品 18 件。(2)设生产 A种产品的件数是x,则生产 B种产品的件数是50-x 。由题意得: y=700 x
7、+1200*(50-x)=-500 x+60000(其中 x 只能取 30、 31、32)因为-5000 所以 y 随 x 的增大而减小 , 当 x=30 时, y 的值最大因此,按( 1)中第一种生产方案安排生产,获得的总利润最大最大的总利润是:- 50030+60000=45000 (元)说明 :本题是先利用不等式的知识,得到几种生产方案,再利用一次函数性质得出最佳生产方案。三. 使用图示法求解一次函数应用题所谓图示法就是用图形来表示题中的数量关系,从而观察出函数关系的解题方法。此法对于某些一次函数问题非常有效,解题过程直观明了。例题 3. 某市的 C县和 D县上个月发生水灾,急需救灾物资
8、10t 和 8t 。该市的 A县和 B县伸出援助之手,分别募集到救灾物资12t 和 6t ,全部赠给 C县和 D县。已知 A、B两县运资到 C、D两县的每吨物资的运费如下表所示:A县B县C县4030D县5080(1)设 B 县运到 C 县的救灾物资为xt ,求总运费w(元)关于x(t )的函数关系式,并指出 x 的取值范围;(2)求最低总运费,并说明总运费最低时的运送方案。分析 : 本题的信息量大,数据也较多,为梳理各个量之间的关系,我们可以采用如下的图示整理信息。解:精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - -
9、 - -第 3 页,共 9 页 - - - - - - - - - - (1)w=30 x+80(6-x)+40(10-x)+5012-(10-x)=-40 x+980 自变量 x 的取值范围是:0=x=6(2)由( 1)可知,总运费w随 x 的增大而减小,所以当x=6 时,总运费最低。最低总运费为 -406+980=740 (元)。此时的运送方案是:把B县的 6t 全部运到 C县,再从 A县运 4t 到 C县,A县余下的 8t 全部运到 D县。说明 :本题运用函数思想得出了总运费w与 x 的一次函数关系。一次函数应用题专题训练1一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 一次 函数 应用题 解题 方法
限制150内