《复变函数与积分变换总结参考.doc》由会员分享,可在线阅读,更多相关《复变函数与积分变换总结参考.doc(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、复变函数与积分变换总结复变函数与积分变换总结第一章小结一、复数及运算1.复数及代数运算2.复数的几何表示复数与复平面上的点、向量一一对应;几何角度看唯一确定复数的两个概念为:模、辐角;复数加减乘积运算后对应的复数在坐标面上可通过画图做出;几何运算:积(商)的模等于模的积(商),幅角等于幅角和(差);复数差的模表示两个点间的距离;复数的三角表示在计算复数的乘幂及方根时较方便二、复数集概念:邻域、内点、开集、区域、简单曲线、单联通与多联通区域三、复变函数1.对应于两个二元实变函数,因此对复变函数的研究有两种方法(1).参考一元实变函数的研究方法例.设函数f(z)在z0连续,且f(z0)0,证明必存
2、在z0的一个邻域,使得在此邻域内f(z)0f(z0)2证明:设limf(z)f(z0),则对任意的zz0,存在0使得当zz0时f(z)f(z0)f(z0)2f(z0)2,因此f(z0)f(z)f(z0)2,所以f(z)0.(2).转化为两个二元实变函数的研究,如复变函数的极限与连续性的讨论四、几个特定的复数问题及求解的关键步骤1.证明复数模的不等式关键步骤:(1).证明原不等式两端平方后的不等式(2).利用z2zz2.确定平面曲线的复数方程关键步骤:转化为求x,y满足的方程3.确定复数方程对应图形关键步骤:利用复数差模的几何意义;转化为关于x,y的方程;转化为关于r,的方程4.确定映射wf(z
3、)将z平面上的图形映到w平面上的图形关键步骤:(1).写出wf(z)对应的两个二元实变函数(2).利用z平面上的图形对应的方程将二元实变函数中的两个变量用同一个变量表示5.讨论复变函数wf(z)的极限及连续性关键步骤:(1).将wf(z)看成一些简单函数的运算(2).通过分析这些简单函数对应的两个二元实变函数得到这些简单函数的极限及连续性(3).利用极限及连续的一些运算法则得到原函数的极限及连续性扩展阅读:复变函数与积分变换重要知识点归纳复变函数复习重点(一)复数的概念1.复数的概念:zxiy,x,y是实数,xRez,yImz.i21.注:一般两个复数不比较大小,但其模(为实数)有大小.2.复
4、数的表示1)模:zx2y2;2)幅角:在z0时,矢量与x轴正向的夹角,记为Argz(多值函数);主值argz是位于(,中的幅角。3)argz与arctany之间的关系如下:xy;xyxyx当x0,argzarctany0,argzarctan当x0,y0,argzarctan;4)三角表示:zzcosisin,其中argz;注:中间一定是“+”号。5)指数表示:z(二)复数的运算1.加减法:若z1x1iy1,z2x2iy2,则z1z2x1x2iy1y22.乘除法:1)若z1x1iy1,z2x2iy2,则z1z2x1x2y1y2ix2y1x1y2;zei,其中argz。z1x1iy1x1iy1x
5、2iy2x1x2y1y2y1x2y2x1i2222z2x2iy2x2iy2x2iy2x2y2x2y2z1ei1,z2z2ei2,。2)若z1则z1z2z1z2e1i2;z1z2z1z2e1i23.乘幂与方根1)若z2)若zn1nz(cosisin)zei,则znz(cosnisinn)zeinnn。z(cosisin)zei,则2k2kzzcosisinnn(k0,1,2n1)(有n个相异的值)(三)复变函数1复变函数:wfz,在几何上可以看作把z平面上的一个点集D变到w平面上的一个点集G的映射.2复初等函数1)指数函数:ezexcosyisiny,在z平面处处可导,处处解析;且ezez。注:
6、ez是以2i为周期的周期函数。(注意与实函数不同)3)对数函数:Lnzlnzi(argz2k)(k0,1,2)(多值函数);主值:lnzlnziargz。(单值函数)Lnz的每一个主值分支lnz在除去原点及负实轴的z平面内处处解析,且lnz1;z注:负复数也有对数存在。(与实函数不同)3)乘幂与幂函数:abebLna(a0);zbebLnz(z0)注:在除去原点及负实轴的z平面内处处解析,且zbbzb1。eizeizeizeizsinzcosz,cosz,tgz,ctgz4)三角函数:sinz2i2coszsinzsinz,cosz在z平面内解析,且sinzcosz,coszsinz注:有界性
7、sinz1,cosz1不再成立;(与实函数不同)4)双曲函数shzezezezezshz,chz22;平面内解析,且奇函数,chz是偶函数。在sh,zchzzshzc,hzchz。shz(四)解析函数的概念1复变函数的导数1)点可导:fz0=limfz0zfz0zz0;2)区域可导:fz在区域内点点可导。2解析函数的概念1)点解析:fz在z0及其z0的邻域内可导,称fz在z0点解析;2)区域解析:fz在区域内每一点解析,称fz在区域内解析;3)若f(z)在z0点不解析,称z0为fz的奇点;3解析函数的运算法则:解析函数的和、差、积、商(除分母为零的点)仍为解析函数;解析函数的复合函数仍为解析函
8、数;(五)函数可导与解析的充要条件1函数可导的充要条件:fzux,yivx,y在zxiy可导ux,y和vx,y在x,y可微,且在x,y处满足CD条件:uvyxuv,xy此时,有fzuiv。xx2函数解析的充要条件:fzux,yivx,y在区域内解析ux,y和vx,y在x,y在uv;yxD内可微,且满足CD条件:uv,xy此时fzuiv。xx注意:若ux,y,vx,y在区域D具有一阶连续偏导数,则ux,y,vx,y在区域D内是可微的。因此在使用充要条件证明时,只要能说明u,v具有一阶连续偏导且满足CR条件时,函数f(z)uiv一定是可导或解析的。3函数可导与解析的判别方法1)利用定义(题目要求用
9、定义,如第二章习题1)2)利用充要条件(函数以fzux,yivx,y形式给出,如第二章习题2)3)利用可导或解析函数的四则运算定理。(函数fz是以z的形式给出,如第二章习题3)(六)复变函数积分的概念与性质1复变函数积分的概念:cfzdzlimfkzk,c是光滑曲线。nk1注:复变函数的积分实际是复平面上的线积分。2复变函数积分的性质1)2)nfzdzccc1fzdz(c1与c的方向相反);ccfzgzdzfzdzgzdz,是常数;123)若曲线c由c1与c2连接而成,则cfzdzcfzdzcfzdz。3复变函数积分的一般计算法1)化为线积分:cfzdzcudxvdyicvdxudy;(常用于
10、理论证明)2)参数方法:设曲线c:zzt(t),其中对应曲线c的起点,对应曲线c的终点,则cfzdzf)。tdtzt(z(七)关于复变函数积分的重要定理与结论1柯西古萨基本定理:设fz在单连域B内解析,c为B内任一闭曲线,则fzdz0c2复合闭路定理:设fz在多连域D内解析,c为D内任意一条简单闭曲线,c1,c2,cn是c内的简单闭曲线,它们互不包含互不相交,并且以c1,c2,cn为边界的区域全含于D内,则fzdz,其中c与ck均取正向;fzdzk1cckn1fzdz0,其中由c及c(k1,2,n)所组成的复合闭路。3闭路变形原理:一个在区域D内的解析函数fz沿闭曲线c的积分,不因c在D内作连
11、续变形而改变它的值,只要在变形过程中c不经过使fz不解析的奇点。4解析函数沿非闭曲线的积分:设fz在单连域B内解析,Gz为fz在B内的一个原函数,则zz21fzdzGz2Gz1(z1,z2B)说明:解析函数fz沿非闭曲线的积分与积分路径无关,计算时只要求出原函数即可。5。柯西积分公式:设fz在区域D内解析,c为D内任一正向简单闭曲线,c的内部完全属于4D,z0为c内任意一点,则zzdz2ifzc00fz6高阶导数公式:解析函数fz的导数仍为解析函数,它的n阶导数为fz2idzc(zz)n1n!0fnz0(n1,2)其中c为fz的解析区域D内围绕z0的任何一条正向简单闭曲线,而且它的内部完全属于
12、D。7重要结论:2i,1dzn1(za)0,cn0n0。(c是包含a的任意正向简单闭曲线)8复变函数积分的计算方法1)若fz在区域D内处处不解析,用一般积分法fzdzcfztztdt2)设fz在区域D内解析,c是D内一条正向简单闭曲线,则由柯西古萨定理,cfzdz0c是D内的一条非闭曲线,z1,z2对应曲线c的起点和终点,则有z2z1cfzdzfzdzFz2Fz13)设fz在区域D内不解析fzdz2ifz0czz0曲线c内仅有一个奇点:(f(z)在c内解析)fzdz2ifnz0c(zz)n1n!0n曲线c内有多于一个奇点:fzdz(ci内只有一个奇fzdzck1ck点zk)或:fzdz2iRe
13、sf(z),zk(留数基本定理)ck1n若被积函数不能表示成算。fz(zzo)n1,则须改用第五章留数定理来计(八)解析函数与调和函数的关系1调和函数的概念:若二元实函数(x,y)在D内有二阶连续偏导数22且满足220,xy(x,y)为D内的调和函数。2解析函数与调和函数的关系解析函数fzuiv的实部u与虚部v都是调和函数,并称虚部v为实部u的共轭调和函数。两个调和函数u与v构成的函数f(z)uiv不一定是解析函数;但是若u,v如果满足柯西黎曼方程,则uiv一定是解析函数。3已知解析函数fz的实部或虚部,求解析函数fzuiv的方法。1)偏微分法:若已知实部uux,y,利用CR条件,得v,v;x
14、y对vu两边积分,得vudygx(*)yxx再对(*)式两边对x求偏导,得vxudygxxx(*)gx;由CR条件,uv,得uyxyudygx,可求出xx代入(*)式,可求得虚部vudygx。x2)线积分法:若已知实部dvvvuudxdydxdy,xyyxx,y00uu,xy,利用CR条件可得故虚部为vx,yudxudyc;yx由于该积分与路径无关,可选取简单路径(如折线)计算它,其中x0,y0与x,y是解析区域中的两点。3)不定积分法:若已知实部uux,y,根据解析函数的导数公式和CR条件得知,fzuvuuiixyxy将此式右端表示成z的函数Uz,由于fz仍为解析函数,故fzUzdzc(c为
15、实常数)注:若已知虚部v也可用类似方法求出实部u.(九)复数项级数1复数列的极限1)复数列nanibn(n1,2)收敛于复数abi的充要条件为limana,nlimbnbn(同时成立)2)复数列n收敛实数列an,bn同时收敛。2复数项级数1)复数项级数n(nanibn)收敛的充要条件是级数an与bn同n0n0n0时收敛;n0。2)级数收敛的必要条件是limn注:复数项级数的敛散性可以归纳为两个实数项级数的敛散性问题的讨论。(十)幂级数的敛散性1幂级数的概念:表达式cn(zz0)或cnzn为幂级数。nn0n02幂级数的敛散性1)幂级数的收敛定理阿贝尔定理(Abel):如果幂级数cnzn在z00n
16、0处收敛,那么对满足zz0的一切z,该级数绝对收敛;如果在的一切z,级数必发散。z0处发散,那么对满足zz02)幂级数的收敛域圆域幂级数在收敛圆域内,绝对收敛;在圆域外,发散;在收敛圆的圆周上可能收敛;也可能发散。3)收敛半径的求法:收敛圆的半径称收敛半径。cn1比值法如果limncn0,则收敛半径R1;根值法limcn0,则收敛半径Rn1;如果0,则R;说明在整个复平面上处处收敛;如果,则R0;说明仅在zz0或z0点收敛;注:若幂级数有缺项时,不能直接套用公式求收敛半径。(如cnz2n)n03幂级数的性质1)代数性质:设anz,bnzn的收敛半径分别为R1与R2,记nn0n0RminR1,R
17、2,则当zR时,有nn(an0nbn)zanzbnznn0n0(线性运算)(乘积运算)(anz)(bnz)(anb0an1b1a0bn)znnnn0n0n02)复合性质:设当且gzr,则当zr时,fannn0,当zR时,gz解析R时,fgzangzn。n03)分析运算性质:设幂级数anzn的收敛半径为R0,则n0其和函数fzanzn是收敛圆内的解析函数;n0在收敛圆内可逐项求导,收敛半径不变;且zRfznanzn1n0在收敛圆内可逐项求积,收敛半径不变;0fzdzzRzann1zn0n1(十一)幂函数的泰勒展开1.泰勒展开:设函数fz在圆域zz0可以展开成幂级数fzn0R内解析,则在此圆域内f
18、zfnz0n!n并且此展开式是唯一的。zz0;注:若fz在z0解析,则fz在z0的泰勒展开式成立的圆域的收敛半径Rz0a;其中R为从z0到fz的距z0最近一个奇点a之间的距离。2常用函数在z00的泰勒展开式1nz2z3zn1)ez1z2!3!n!n0n!z12)zn1zz2zn1zn0zz1(1)n2n1z3z5(1)n2n13)sinzzzz3!5!(2n1)!n0(2n1)!z(1)n2nz2z4(1)n2n4)coszz1z(2n)!2!4!(2n)!n0z3解析函数展开成泰勒级数的方法1)直接法:直接求出cn1fnz0n!,于是fzcnzz0n。n02)间接法:利用已知函数的泰勒展开式
19、及幂级数的代数运算、复合运算和逐项求导、逐项求积等方法将函数展开。(十二)幂函数的洛朗展开1.洛朗级数的概念:cnzz0n,含正幂项和负幂项。n2洛朗展开定理:设函数fz在圆环域R1zz0R2内处处解析,c为圆环域内绕z0的任意一条正向简单闭曲线,则在此在圆环域内,有fzcnzz0n,且展开式唯一。n3解析函数的洛朗展开法:洛朗级数一般只能用间接法展开。*4利用洛朗级数求围线积分:设fz在rrzz0R内的任何一条正向简单闭曲线,则c1为f(z)在rzz0R内洛朗展开式中zz0R内解析,c为fzdz2ic。其中c11zz0的系数。说明:围线积分可转化为求被积函数的洛朗展开式中(zz0)1的系数。
20、(十三)孤立奇点的概念与分类1。孤立奇点的定义:fz在z0点不解析,但在z0的0析。2。孤立奇点的类型:1)可去奇点:展开式中不含fzc0c1zz0c2zz02zz0内解zz0的负幂项;2)极点:展开式中含有限项zz0的负幂项;c(m1)gzcmc12fzcc(zz)c(zz),01020(zz0)m(zz0)m1(zz0)(zz0)m其中gzcmc(m1)(zz0)c1(zz0)m1c0(zz0)m在z0解析,且gz00,m1,cm0;3)本性奇点:展开式中含无穷多项zz0的负幂项;fzcmc1mcc(zz)c(zz)010m0m(zz0)(zz0)(十四)孤立奇点的判别方法fzc0常数;1
21、可去奇点:zlimz0fz2极点:zlimz0fz不存在且不为。3本性奇点:zlimz04零点与极点的关系1)零点的概念:不恒为零的解析函数fz,如果能表示成fz(zz0)mz,其中z在z0解析,z00,m为正整数,称z0为fz的m级零点;2)零点级数判别的充要条件z0是nfz00,fz的m级零点mfz00(n1,2,m1)1的m级极点;fz3)零点与极点的关系:z0是fz的m级零点z0是4)重要结论若za分别是z与z的m级与n级零点,则za是zz的mn级零点;z当mn时,za是的mn级零点;zz当mn时,za是的nm级极点;zz当mn时,za是的可去奇点;z当mn时,za是zz的l级零点,l
22、min(m,n)当mn时,za是zz的l级零点,其中lm(n)(十五)留数的概念1留数的定义:设z0为fz的孤立奇点,fz在z0的去心邻域0zz0内解析,c为该域内包含z0的任一正向简单闭曲线,则称c积分fz2i1d为zfzfzdz在z0的留数(或残留),记作Resfz,z0c2i12留数的计算方法若z0是fz的孤立奇点,则Resfz,z0c1,其中c1为fz在z0的去心邻域内洛朗展开式中(zz0)1的系数。1)可去奇点处的留数:若z0是fz的可去奇点,则Resfz,z1202)m级极点处的留数法则I若z0是fz的m级极点,则1dm1Resfz,z0limm1(zz0)mfz(m1)!zz0d
23、z特别地,若z0是fz的一级极点,则Resfz,z0lim(zz0)fzzz0注:如果极点的实际级数比m低,上述规则仍然有效。Pz法则II设fz,Pz,Qz在z0解析,Pz00,QzQz00,Qz00,则ResPzQz,z0Pz0Qz0(十六)留数基本定理设fz在区域D内除有限个孤立奇点z1,z2,zn外处处解析,c为cD内包围诸奇点的一条正向简单闭曲线,则nn1fzdz2iResfz,z说明:留数定理把求沿简单闭曲线积分的整体问题转化为求被积函数fz在c内各孤立奇点处留数的局部问题。积分变换复习提纲一、傅里叶变换的概念Ff(t)f(t)ejwtdtF(w)F1F()12F()ejtdf(t)
24、二、几个常用函数的傅里叶变换Fe(t)1j1()jFu(t)F(t)1F12()三、傅里叶变换的性质位移性(时域):Ff(tt0)ejwt00Ff(t)0位移性(频域):Fejwtf(t)F(w)www位移性推论:Fsinw0tf(t)F(ww0)1F(ww0)F(ww0)2j位移性推论:Fcosw0tf(t)1F(ww0)F(ww0)2微分性(时域):Ff(t)(jw)F(w)(tFf(n)(t)(jw)nF(w),t,f(n1)(t)0,f(t)0),微分性(频域):F(jt)ftFw,F(jt)nf(t)F(n)(w)相似性:Ff(at)1wF()aa(a0)四、拉普拉斯变换的概念Lf(
25、t)0f(t)estdtF(s)五、几个常用函数的拉普拉斯变换Lekt1;sk(m1)m!1是自然数;()Ltm(m(1)1,(),(m1)m(m))sm1sm12Lu(t)L1L(t)11;sLsinktk,s2k2kLshkt2,sk2设ss2k2sLchkt2sk2T1则Lf()(f(t)是以T为周期的周期f(tT)f(t),t()ftdt。Ts01eLcoskt函数)六、拉普拉斯变换的性质微分性(时域):LftsFsf0,Lf(t)s2F(s)sf(0)f(0)()tftF微分性(频域):Ls,L(t)nftF(n)stFs积分性(时域):L0ftdts积分性(频域):LfttFsds(收敛)s位移性(时域):LeatftFsa相似性:Lf(at)1F(s)aa位移性(频域):LftesFs(0,t0,f(t)0)(a0)七、卷积及卷积定理f1(t)*f2(t)f1()f2(t)dFf1(t)f2(t)F1(w)F2(w)Ff1(t)f2(t)1F1(w)F2(w)2Lf1(t)f2(t)F1(s)F2(s)八、几个积分公式f(t)(t)dtf(0)f(t)(tt0)dtf(t0)150f(t)dtLf(t)dsF(s)ds1600t0f(t)ektdtLf(t)sk第 11 页 共 11 页
限制150内