《2022年佳鑫诺专接本数学教材答案.pdf》由会员分享,可在线阅读,更多相关《2022年佳鑫诺专接本数学教材答案.pdf(26页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、习题1 (2)定义域不同, X-1 ;R(3)22111XXX且定义域也不同, X0 ;R(4)值域不同 -1 ,1;0,1 (5)定义域不同,X0 ;R2. (4)22ln1ln1fxxxxx1222ln1ln1ln1fxxxxxxx故fxfx,fx为奇函数 .(6)fxgxg xg xgxfx,奇函数。3 (1)y=sinx与 y=cosx 的周期都是2,故 y=sinx+cosx的周期为2(2)设周期为T, 则 1+sin2x=1+sin2(x+T) sin2x=sin(2x+2T) 2T=2TVT=TV5. 010XXXX6. 2222(sincos )sincos2sincos1si
2、n 2yxxxxxxx又0,2x,故1sin20,2x,故 y 的值域为2,27. 令ux则xu故22sin()sin,0,0()1,01,0uuuufufuuuuuuu故fx2sin,01,0 xxxxx8. 1fx是偶函数1fxfxQ0fx是奇函数0fxfx9定义域为0220 xxx10. (1)22290933101xxxxx且1x(2) .0. 1.2xkk精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 1 页,共 26 页 - - - - - - - - - - (3) 111021011011
3、110 xxxxxxxx(4) R11.12. fxQ的定义域为 -2,2则21213xx故1yfx的定义域为 -1,313. 设它的一个边为x 则另一个边长为2224Rxx故面积24S xxx 0 x21.习题否,例如数列1nnx2.否,同上3.否,例如数列1nnxn5. 不一定,例:1nnx,11nny,n=1.2.3.则0nnxy6. 是7. 否,1nnx,lim1nxx则limnxx是不存在的8. 否12coscoslimlim1sinsinxxxxxxxxxxxx1401sinsinlimlim01xuuxux21212_3精品资料 - - - 欢迎下载 - - - - - - -
4、- - - - 欢迎下载 名师归纳 - - - - - - - - - -第 2 页,共 26 页 - - - - - - - - - - 15. 因为222113limlim1112xxaxaxxxxx,故21lim02xaxxa17. 10limxxe不存在1100lim0,limxxxxee18. 2200limlim0sin 22xxxxxx222200limlim1xxxxarctg xx22200limlim21cos2xxxxxx220lim0ln 2xxx20222221111sin1sin1sin1limlim1limlim12111xxxxxxxxxxxx21 ( 1)12
5、3233limlim323213nnnnnnnn(2)1111211111.282222limlimlim1151151.15544 5545nnnnnnnnn (3)原式 = 111111111lim1.23355772121nnn =111111lim1lim221222 212nnnn(4)原式 =22212122limlim1122nnnnnnn精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 3 页,共 26 页 - - - - - - - - - - (5) 原式 =2224221111liml
6、im1111nnnnnenneenn(6) 原式 = lim 33nnnnx(7) 原式 = 111112224lim 22 .2lim 22nnnn(8) 原式 =2222555limlim25115nnnnnnnnn22. (1)原式 = 24223342232sin1sinlimlimsinlim1 001111xxxxxxxxxxxxx(2)原式 = 088lim55xxx(3)1x故10 x又0 x时11nx nx即 原式 =11lim1xn xnx(4)sinsinlimlim1xxxxxx(5)原式 = 121211lim112xxexeex(6)原式 = 22222222lim
7、limlim11111xxxxxxxxxxxxxxxxxx(7)原式 = 2112200lim 12lim12xxxxxxe(8)原式 = 001sin1ln coscos1ln coslimlim000lim coslim1xxxxxxxxxxxxxeeee精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 4 页,共 26 页 - - - - - - - - - - 23. (1)100limlim 211xxxfx00limlim1xxxfxtgx00limlimxxfxfx故0limxfx不存在 .(
8、2) 2200limlim0 xxtgxxxx200cos12limlim0 xxxxxx00ln 122limlim2xxxxxx2001sin1limlimsin0 xxxxxxx(3) 22lim01xxaxbxQ故212lim01xa xab xbx则10,0aab则1ab习题2. 否,例:11 ,1fxx xg xxfx g xx在01x处不间断 .3. 否,例:131fxxx11g xx3g xfxx在01x处不间断4. 否,例:xfxx00 xx5. 否,例:0fxx0112xx6. 否,例:xfxex7. 否,例:11fx0112xx12. 11100lim 1lim 10 x
9、xxxxxefk13. fx在0 x点连续,则000limlimxxxxfxfxefx精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 5 页,共 26 页 - - - - - - - - - - 14. 定义域229032,2340 xxxx故连续区间3,22,3U15. 1x和2x为间断点,2x为第二类间断点.17. 0lim1xy0lim1xy故在 x=0 处不连续 .18. 220001cos1cos11limlimlimsin1cos1 cos2xxxxxxxx2011lim22xx故001lim
10、lim2xxyy故在 R上连续19. 00limlim110 xxtgxxaaxx01limsin11xxbbabx20. 定义域为 x1,故间断点为x=111lim12xxarctgx11lim12xxarctgx21. 证明:令51xfxx,考虑闭区间10,2,fx在10,2是连续的。且010f,151022f由零点存在定理,在10,2内至少存在一点使得,0f即51022. 证:令F xxfx则F x在0,1上是连续的,且00000Fff1110Ff由零点存在定理,在1,0上至少存在一点使得,0f即得证习题1. 0000002021limlim2hhfxhfxfxhfxfxhh精品资料 -
11、 - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 6 页,共 26 页 - - - - - - - - - - 2. 0sin00f00fa可导故在x=0 处连续,则000limlim cos1limxxxfxxaxbb故 a=0,b=1.5. 由题意得:0003lim0 xfxxfxxx000000limlim 30303xxfxxfxxfxfxx6. 211limlim12xxfxx11limlim 22xxfxx故连续0022fxx02fx故可导习题1. 1lnlnlnyfttftt22111 111lnlnln
12、lnlnlnyftftftftftftttt ttt2. 1eyx故切线的斜率为1ex,又 t 与 x 轴平行,则100exx代入11eyxy则切点为( 0,-1 )5. 22cos1111112seccos12 22sinsincos2sincos2222xxyxxxxxxtgx6. (1)lnlnln lnlnxxxxxxyxee故ln ln111lnlnlnln lnlnlnxxxyexxxxxx xx(2)2sinsinln121xxxyxe故2sinsinln 12222212cosln 1sin21cosln 1sin11xxxxyexxxxxxxxxx7. (1)22121211
13、yx arctgxxxarctgxx21221yarxtgxxx精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 7 页,共 26 页 - - - - - - - - - - (2)212xye212 2xye104ye8. (1)2sec1ytg xyyxyy22222sec11cos1seccos1sin ()xyyxyxyxyxy(2)1yyyyxeyexey1yyeyxe9. (1)11dxdxdtdydyttdt22231111d xtdxdytttdt(2)32439tttdxdxedtedyd
14、yedt22232214143339ttttd xeeedxdyedt10. (1)lnyxx1lnln1yxxxx11yxx2yx32yx故112 !nnnnd ynxdx(n2)(2) xyxexxyexexxxyeexe精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 8 页,共 26 页 - - - - - - - - - - nxxxnd ynexeexndx11. 22yfxx2222222242yfxxxfxx fxfx习题2. 2221sincos212cosxyxxyxyyxxy故2221
15、2 cos12coscosxxydyx dxdxxyxy习题2. 14f316f41fxx则31124 411fffba3. 00f14f212fxx则2214123又0,1故33习题1. 1111211ln1ln1limlimlimlim1111ln1 ln2ln(1)xxxxxxxxxxxxxxxxxxx2. 123000021lnlimlnlimlimlim20112xxxxxxxxxxx3. 1001sinsinlim lnlim ln00sinlim1xxxxxxxxxxeeex习题1. 定义域101xx又111yx令00yx当0 x时0y;当0 x时0y故在 -1 ,0 上单调减少
16、,在0 ,+ 上单调增加 .精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 9 页,共 26 页 - - - - - - - - - - 2. 22002limlim1sincos2xxxxxxeeeexxx3. 212ln2lnyxxxxxx令00yx或12xe又定义域为x0 故在12xe处有极值当12xe时,0y. 当12xe时,0y故为极小值 .4. 232yaxbx62yaxb令06206203byaxbaxbxa(1,3)为拐点13ba又293,32abab5. (1)定义域为 0,+ )又31
17、1022xyxx故0,+ ) 为单调增区间 .(2)2ln1(ln)xyx令0yxe定义域0,11,U当0,1x时0y;当0,xe时0y,当 ,)xe时,0y故单调减区间0,1和0,e,单调增区间 ,)e6. 344yxx令00yx或1x则当0 x时,0y为极小值,当1x时, y=1 为极大值7. 11ln xxxyxe,11ln222111ln1lnxxxyexxxxxx令0yxe当 xe 时0y故 x=e 的极大值,为1ee8. 22exyxex e精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 10
18、 页,共 26 页 - - - - - - - - - - 令0200 xyxexx或2xx(- ,0)0(0,2)2(2,+ )y0+0y单减极小单增极大单减极小值00y,极大值224ye9. 3416yxx解:0y得 y 在-1,3上的驻点为,10,2xx,由于15,02,214,311yyyy故最大值311y,最小值214y.10. 设矩形的边,周长为c,面积为 S则2,cabsab则2csaa02ca又22csa令0s得驻点,4ca,又 S为可导函数,且最大值一定存在,故当4ca时 S最大,此时216cs,此时4cab即为正方形的面积最大11. 设扇形面积为S,弧长为L,周长为C则2L
19、 rS,2CrL则25022SCrrrr (0r0)故在 x1 上,fx为单调增,则10fxf则2(1)ln01xxx习题精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 12 页,共 26 页 - - - - - - - - - - 1. C QCCaQbQQ2CCaQ令0cCQa2. 343151535dQPPPPdP QQP3. 90020C xCxxx29001Cx令030Cx31800Cx则2(30)03C故30 x时平均成本最小(30)80C(万元)4. 设总利润为S则2161000100049
20、9616Syxxxxxx9962Sx令0498Sx,且S处处存在又20S,故498x时, S最大习题精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 13 页,共 26 页 - - - - - - - - - - (一) 2. (A)21cos2112sin2(1 cos2 ) 22sin2222xxdxdxx d xxxc11cos2cos22sin 222xdxxd xxc(C)21cos22sin21cos22xxdxdxx dx(二) 3. 2sec xdxtgxc过,24则214tgcc(三) 6
21、. 222112211 2122lnxxxdxdxxxdxxxxcxx7. 21cos11sinsin2222xxdxdxxxc9. 222222221221111111xxdxdxarctgxCxxxxxxx10. 323211111132x xxxxdxdxxx dxxxCxx11. 22222 22122222xxxdxdxxdxxx Cxx12. 222222221122222111xxxdxdxdxxarctgxCxxx13. 3222222coscos1sin11sinsin1sinsinsinsinsinsinsinxxxdxdxdxdxxCxxxxx14. 2222cos24c
22、os222sin2sincossin 2sin 2sin2xxdxdxdxCxxxxx15. 2222221cos1cos1cossin1cos21cossin2sxxxdxdxdxxxxcox22111111sec2cos22222dxxdxtgxCx16. 2135 225235333ln 2ln33xxxxdxdxxC17. 4444xxxedxedxeC(一) 1. 2222211d xxd xxd x精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 14 页,共 26 页 - - - - - -
23、- - - - 2. 211darctgxdxx211darcctgxdxdarctgxdarcctgxx(二) 3. 10210111sec11tg xxdxtg xdtgxtg xC4. 11lnln lnlnlnln lnlnln lndxdxxCxxxxx5. 221111xxxxxxxedxdxdearctgeceeee6. 22444sin cossin111sinsinsin1sin1 sin2 1sin2xxxdxdxdxarctgxCxxx7. 23sincos13sincossincos23 sincos3 sincosxxdxdxxxxCxxxx8. 3222222222
24、2211991ln992929222 9xxxxdxdxdxdxxCxxxx9. 22212ln4242dxdxxCxxx10. 332226626322111lnln4362444344dxdxdxdtttCx xxxxxxtt则6661ln2444dxxCxx x11. 2222coscoscossincos2cossinsin2222222xxxxxxxxdxdxd224212sinsin2sinsin22232xxxxdC12. 22322232sin111secsec11coscos3xtg xxdxtg xdxdtdttdtttCxxt则331secsecsec3tg xxdxxx
25、C13. 22arctanarctan122 arctanarctan2arctan121xtdxdttdttCtxx则2arctanarctan1xdxxCxx精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 15 页,共 26 页 - - - - - - - - - - 14. 2221 ln1ln11lnlnlnln1lnlnlnxxdxd xxd xxCxxxxxxxxx16. 211122arctan111dxdxdxxCxxxx17. 1212212ln 111211xxdxdxdxdxxxCx
26、xxxx18. 2222222222222xaxaadxdxax dxdxaxaxax22222arcsinxxaxxdaxaCa222222arcsinxxxaxdxaCaax则222222arcsin22xaxxdxaxCaax19. 21sectansectan1dxddCxx又1arccosx故21arccos1dxCxxx20. 23321seccossinsec1dxddCx又tanx则2222222111sin1cos111sectan111xxx则2sin1xx则32211dxxCxx21. 令2sinxt则 cos2x=12t 2tan1txt则121tfttt则121tft
27、tt1. sincoscoscoscossinxxdxxdxxxxdxxxxC2. 22sinarcsinarcsinarcsinarcsin11xarcxdxxxxdxxxdxxxxCx精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 16 页,共 26 页 - - - - - - - - - - 3. xxxxxxxe dxxdex eedxx eeC4. 3333321lnlnlnlnln33333xxxxxxxdxxdxdxxdxx33331 11lnln33 339xxxxCxxC5. cosco
28、scoscoscossinxxxxxxexdxxdeexe dxexexdxcossinsinsincosxxxxxexxdeexexexdxC1cossincos2xxexdxexxC6. 222tansec1secxxdxxdxxxx dx2tantantan2xxdxxdxxxxdxC2tanln cos2xxxxC7. 22221lnlnlnln2lnxdxxxxdxxxxxdxx22ln2 lnln2ln2lnxxxdxxxx xxdx221ln2ln2ln2ln2xxxxxdxxxx xxCx8. 1111sin cossin2cos2cos2cos22444xxxdxxxdxxd
29、xxxxdx1111cos2cos22cos2sin24848xxxd xxxxC9. 3333322lnlnln1111lnln3 lnxxxdxxddxxdxxxxxxxx33222lnln113ln3lnxxxdxxdxxxx333222lnlnln3 ln12ln3ln3xxxxxdxdxxxxxxx3232ln3 lnln3 ln1ln1 16 ln66xxxxxxddxxxxxxxx x32ln3 lnln166xxxCxxxx精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 17 页,共 26
30、 页 - - - - - - - - - - 10. 1cos lncos lnsin lncos lnsin lnx dxxxxxdx xxx dxx1cos lnsin lncoslnxxxxxxxdxx故1cos lncos lnsin ln2x dxxxxC11. ln lnln lnlnlnln lnlnln lnxdxx dxxxxdxx111lnln lnlnlnln lnlnln lnlnlnxxxdxxxdxxxxCx xx12. sin2cos2 cos2 cosxxdxxdxxxxdx2 cos4sin2 cos4sin4 sinxxxdxxxxxxdx2 cos4sin
31、4cosxxxxxC13. 2221ln 1ln 121xdxxxxxdxx222222222ln 1ln 1211xxxdxxxdxxx2ln 122arctanxxxxC14. 2233sintansectansectansecseccosxdxxxdxxdxxxxdxx32sectan secsectantansecxxxdxxxxxdx2sectansec1 secxxxxdx3sectansecsecxxxdxxdx31111secsec tansecsec tanln sectan2222xdxxxxdxxxxxC23sin11sec tanln sectancos22xdxxxx
32、xCx 15. 11arctanarctan12xdxxxxdxxx1arctanarctan12 11xxxdxxxdxxx精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 18 页,共 26 页 - - - - - - - - - - arctanarctanxxxxC1 arctanxxxC1. 22311ln2ln5325xdxdxxxCxxxx2. 222222222212111111ln221211211xxdxdxdxdxCxxxx xxxxx3. 2222222122213sin62sin6
33、1cos27cos117cos7221wdxdxdxdudwduwxxxuwwuw2222222121112212tanarctanarctan34444332 33333222dwdwdwdwwxCCwwww5. cos1cot11sinsinsinsin1sin1sin1sinsin1sinxxxxdxdxdxdxxxxxx1sinln sinln 1sinlnln csc1sinxxxCCxCx6. 22222tan111112arctanarctan13cos2222231xuudxduduCCuxuu8. 11xdxxx令221111xttxxt则241tdxdtt则22222221
34、14411111x dxttttdtdtxxtttt22111122arctan2ln2111tdttCttt1112arctanln111txxCtxx7. 32244144111dxttdtdttdtttttxx精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 19 页,共 26 页 - - - - - - - - - - 24 ln 12tttC444ln 142xxxC习题2. (1)在 1 ,4 上, m=2 ,M=17 ,ba=3, 则4216151xdx(2)在 2 , 0 上,14me,2M
35、e, b a=2,则21024222xxeedxe3. (2)在1 ,2 上32xx,则331x dx大(3)在 0 ,1 上ln(1)xx,则10 xdx大5. 220sinsin2tdu dudxttdtdt220coscos2tdu dudyttdtdt222cos2cotsin2dydtdytttdtdxdxtt6. 2xdIxxedx令0dIxdx则 x=0 故 x=0 时I x有极值 .7. (1)222202000coscos2limlimlim cos12xxxxt dtxxxxx(2)2222202222arctanarctanarctan1limlimlimlim arct
36、an1241211xxxxxtdtxxxxxxxxx(3)210lim1nxdxx0,1xQ故 原式 =08. (1)12Fxfxafxaa(2)001limlim222x axaaafxafxafxfxft dtfxa9. (1)12Fxfxfx精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 20 页,共 26 页 - - - - - - - - - - 1. 3322000001sinsinsincos1coscosddddd314coscos0332. 222212111ln1ln2 ln123 1
37、11 ln1ln1lneeedxedxdxxxxxxxx3. 00022222201arctan122221111d xdxdxxxxxx4. 02222202222coscoscos1coscossincos sincos sinxxdxxx dxxx dxxxdxxxdx0202224coscoscoscos333xdxxdx5. 2200021cos22cos2 cos2 cos2sin2 sin2 2202xdxxdxxdxxdxxx6. 210021224421sinsintancosxtdxtdttdtxt0240sec1tan144tdttt7. 3333222221444sec
38、cos113 33sin2tansinsinsin314dxttdtdtdtttttxx8.22111133551428654xdxtttdtdttx9. 111111000111 20 xxxxxe dxxdexee dxeee10.4ln 4ln 4ln 4ln 4222222000002ln 4ln 4ln2244ln 444 ln 41002tttttttxttdte dtte dttdet ee dexe精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 21 页,共 26 页 - - - - -
39、- - - - - 11. 111001sin lnsinsincos0etttx dxt edtt eetdt11001coscossin0tttetdtetetdt1100sinsin1cos1 1sintttedteetdt101sinsin1cos1 12tt edtee12. 0001111lnetttex dxt e dtt e dtt e dt0110ttt e dttde01110012210tttttee dtteed te13. (1)4sinfxxx为奇函数,则0fx dx(2)2242220021cos24cos2421cos22ddd22222001cos421cos
40、 22cos2212cos22dd31 1132sin 42sin 2222 4220(3)22112226122002arcsinarcsin22coscos11xxtdxdxtdttxx32602324t dt(4)fx为奇函数,则550fx dx14. 222aadxdxaaada22022adxdxada2200aaxdxxdx精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 22 页,共 26 页 - - - - - - - - - - 习题1. (1)431111133dxxx(2)1121dx
41、xx发散(3)00110kp tkp tktpteeedted kp tkpkpkp(4)11011sinsinsincos0ptptptptewtdtwtdewteewwtdtpp2200coscossin0ptptptwwwtdewt eewwtdtpp2222200sinsinptptwwwewtdtewtdtpppw(5)2221arctan10221111dxdxdxxxxxx2. 000100 xxxxxxe dxxdexee dxe222000220 xxxxx e dxx dex exe dx333000330 xxxxx e dxx dex exe dx00!nxnxx ed
42、xx den3. 21limlim1xxcccxxcxcexecxcex22222221111 1122222 224cccttttctcccccte dttdetee dteee精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 23 页,共 26 页 - - - - - - - - - - 2215242ccceec习题1. (1)221213lnln 2122xAxdxxx(2)110120 xxxxAeedxeee e2. 24yx则在0, 3与3,0处的切线的斜率为4 和 2 则这两切线分别为43x
43、y,26xy,两直线焦点为3,32则3322230243432643Axxxdxxxxdx33222302934x dxxdx3. 22ypx在点,2pp处的切线斜率为12pyx则法线斜率为 -1 ,则发现方程为32xpy2322xpyypx发现与抛物线的交点为,2pp9, 32pp则9222023162 2223pppApxdxxppx dxp4. 22222212244aaAaede dee5. (1)例题6. 当焦点为通径时,面积最小,通径为x=a精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 24
44、 页,共 26 页 - - - - - - - - - - 习题1. ar垂直于br,230abrr,2sin,2ababa babrrrrrrrrarbr,236sin0aba babrrr rr r2. 不存在5. 32339632ababa ab aa ab brrrrr rr rrrr r6. 设iikcxyzru ru u ru u r且2221xyz则220c axyzr r22 250,63b cxyzxyzr r或22 2,63xyz7. (1)28100a br r垂直(2)517010214333ijkc drrrr u r平行8. 1 12233222222123123c
45、os,0aba ba ba baaabbbr r则夹角为29. 255cos,292529a br r则ar在br上的投影为cos,5aa brr r10. 2220akbakbakbrrrrrr则293255kk习题1. 12,3,4nu r22, 3,4nu u r1与2的夹角为111111cos29n nn nu r u rur u r故补充和也不垂直但相交精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 25 页,共 26 页 - - - - - - - - - - 3. 设平面方程为3x+2y+3z+d=0 则61206dd4. 设平面方程为ax+by+cz+d=0 则2022040bcdabcdabcd5. 垂直于 x 轴,则平面方程为x=k,又过( 1,-2 ,4)则 x=16. 设平面法向量为12,3,4nu r精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 26 页,共 26 页 - - - - - - - - - -
限制150内