基于MATLAB的模糊PID控制器的设计(共46页).doc
《基于MATLAB的模糊PID控制器的设计(共46页).doc》由会员分享,可在线阅读,更多相关《基于MATLAB的模糊PID控制器的设计(共46页).doc(46页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上沈阳化工大学本科毕业论文题 目: 基于MATLAB的模糊PID控制器的设计及其实现_ 院 系: 信息工程学院_ _ 专 业: 电气工程及其自动化_班 级: 电气 0703_ 学生姓名: 李辰龙_ 指导教师: 刘 晶_ 论文提交日期:2011年6月27日论文答辩日期:2011年6月28日专心-专注-专业毕业设计(论文)任务书电气工程及其自动化专业0703班学生:李辰龙毕业设计(论文)题目:基于MATLAB的模糊PID控制器的设计及其实现毕业设计(论文)内容:1. 学习模糊控制理论;2. 学习MATLAB仿真软件;3. 设计fuzzy-PID仿真控制系统毕业设计(论文)专
2、题部分:模糊PID MATLAB仿真控制系统的设计 起止时间:2011年3月-2011年6月指导教师: 签字 年 月 日教研主任: 签字 年 月 日学院院长: 签字 年 月 日内容摘要PID(比例 积分 微分)控制具有结构简单、稳定性能好、可靠性高等优点,尤其适用于可建立精确数学模型的控制系统。而对于一些多变量、非线性、时滞的系统,传统的PID控制器并不能达到预期的效果。随着模糊数学的发展,模糊控制的思想逐渐得到控制工程师们的重视,各种模糊控制器也应运而生。而单纯的模糊控制器有其自身的缺陷控制效果很粗糙、控制精度无法达到预期标准。但利用传统的PID控制器和模糊控制器结合形成的模糊自适应的PID
3、控制器可以弥补其缺陷;它将系统对应的误差和误差变化率反馈给模糊控制器进而确定相关参数,保证系统工作在最佳状态,实现优良的控制效果。论文介绍了参数自适应模糊PID控制器的设计方法和步骤。并利用MATLAB 中的SIMULINK 和模糊逻辑推理系统工具箱进行了控制系统的仿真研究,并简要地分析了对应的仿真数据。关键词: 经典PID控制; 模糊控制; 自适应模糊PID控制器; 参数整定; MATLAB仿真ABSTRACTPID(Proportion Integration Differentiation) control, with lots of advantages including simpl
4、e structure, good stability and high reliability, is quite suitable to establish especially the control system which accurate mathematical model is available and needed. However, taken multivariable, nonlinear and time-lag into consideration, traditional PID controller can not reach the expected eff
5、ect. Along with the development of Fuzzy Mathematics, control engineers gradually pay much attention to the idea of Fuzzy Control, thus promoting the invention of fuzzy controllers. However, simple fuzzy controller has its own defect, where control effect is quite coarse and the control precision ca
6、n not reach the expected level. Therefore, the Fuzzy Adaptive PID Controller is created by taking advantage of the superiority of PID Controller and Fuzzy Controller. Taken this controller in use, the corresponding error and its differential error of the control system can be feed backed to the Fuzz
7、y Logic Controller. Moreover, the three parameters of PID Controller is determined online through fuzzification, fuzzy reasoning and defuzzification of the fuzzy system to maintain better working condition than the traditional PID controller. Meanwhile,the design method and general steps are introdu
8、ced of the Parameter self-setting Fuzzy PID Controller. Eventually, the Fuzzy Inference Systems Toolbox and SIMULINK toolbox are used to simulate Control System. The results of the simulation show that Self-organizing Fuzzy Control System can get a better effect than the Classical PID controlled evi
9、dently.Keywords: Classic PID control; Fuzzy Control; Parameters tuning; the Fuzzy Adaptive PID Controller; MATLAB simulation目 录 第一章 绪论11.1 课题研究的背景及学术意义11.2 经典PID控制系统的分类与简介21.2.1 P控制21.2.2 PI控制21.2.3 PD控制21.2.4 比例积分微分(PID)控制21.3 模糊逻辑与模糊控制的概念31.3.1 模糊控制相关概念31.3.2 模糊控制的优点41.4 模糊控制技术的应用概况41.5 本文的研究目的和内容
10、5第二章 PID控制62.1 PID的算法和参数62.1.1 位移式PID算法62.1.2 增量式PID算法72.1.3 积分分离PID算法72.1.4 不完全微分PID算法82.2 PID参数对系统控制性能的影响92.2.1 比例系数KP对系统性能的影响92.2.2 积分时间常数Ti对系统性能的影响92.2.3 微分时间常数Td对系统性能的影响92.3 PID控制器的选择与PID参数整定102.3.1 PID控制器的选择102.3.2 PID控制器的参数整定10第三章 模糊控制器及其设计113.1 模糊控制器的基本结构与工作原理113.2 模糊控制器各部分组成113.2.1 模糊化接口113
11、.2.2 知识库123.2.3 模糊推理机123.2.4 解模糊接口123.3模糊推理方式133.3.1 Mamdani模糊模型(迈达尼型)133.3.2 Takagi-Sugeno模糊模型(高木-关野)133.4模糊控制器的维数确定143.5 模糊控制器的隶属函数153.6模糊控制器的解模糊过程173.7 模糊PID控制器的工作原理18第四章 模糊PID控制器的设计194.1 模糊PID控制器组织结构和算法的确定194.2 模糊PID控制器模糊部分设计194.2.1 定义输入、输出模糊集并确定个数类别194.2.2 确定输入输出变量的实际论域204.2.3 定义输入、输出的隶属函数204.2
12、.4 确定相关模糊规则并建立模糊控制规则表214.2.5 模糊推理23第五章 模糊PID控制器的MATLAB仿真255.1 模糊控制部分的fuzzy inference system仿真255.1.1 定义输入输出变量并命名255.1.2 编辑隶属函数255.1.3 编辑模糊规则库265.2 对模糊控制器的SIMULINK建模275.2.1 将模糊系统载入SIMULINK275.2.2 在SIMULINK中建立模糊子系统275.3 PID部分的SIMULINK建模285.4 模糊PID控制器的SIMULINK建模295.5 利用子系统对控制系统进行SIMULINK建模295.6 控制系统的SI
13、MULINK仿真研究30第六章 结束语34参考文献35致谢36第一章 绪论1.1 课题研究的背景及学术意义随着越来越多的新型自动控制应用于实践,其控制理论的发展也经历了经典控制理论、现代控制理论和智能控制理论三个阶段。智能控制的典型实例是模糊全自动洗衣机。自动控制系统可分为开环控制系统和闭环控制系统。一个控制系统包括控制器、传感器、变送器、执行机构、输入输出接口。控制器的输出经过输出接口、执行机构加到被控系统上;控制系统的被控量,经过传感器、变送器通过输入接口送到控制器。不同的控制系统,传感器、 变送器、执行机构是不一样的。比如压力控制系统要采用压力传感器;电加热控制系统要采用温度传感器1。目
14、前,PID控制及其控制器或智能PID控制器(仪表)已经很多,产品已在工程实际中得到了广泛的应用。比如,工业生产过程中,对于生产装置的温度、压力、流量、液位等工艺变量常常要求维持在一定的数值上,或按一定的规律变化,以满足生产工艺的要求。PID控制器可以根据PID控制原理对整个控制系统进行偏差调节,从而使被控变量的实际值与工艺要求的预定值一致。经典PID控制的调节器控制规律为比例、积分、微分控制,简称PID控制,又称PID调节。PID控制器问世至今已有近70年历史,它因结构简单、稳定性好、工作可靠、调整方便而成为工业控制的主要技术之一,现今也在很多领域有应用。尤其是当被控对象的结构和参数不能完全掌
15、握或得不到精确的数学模型,控制理论的其它技术难以采用,系统控制器的结构和参数又必须依靠经验和现场调试来确定时,应用PID控制技术最为方便。根据统计数据:全世界过程控制领域使用的控制器84%仍是纯PID调节器,若改进型包含在内则超过90%。1.2 经典PID控制系统的分类与简介1.2.1 P控制这类控制输出的变化与输入控制器的偏差成比例关系,输入偏差越大输出越大。单纯的比例控制适用于扰动不大,滞后较小,负荷变化小,要求不高,允许有一定剩余误差存在的场合。在工业生产中,比例控制规律使用较为普遍,它是控制规律中最基本的、应用最普遍的一种,其最大优点就是控制及时、迅速。只要有偏差产生,控制器立即产生控
16、制作用2。但是不能最终消除剩余误差的缺点限制了它的单独使用。 1.2.2 PI控制克服剩余误差的办法是在比例控制的基础上加上积分控制。积分控制器的输出与输入偏差对时间的积分成正比。它的输出不仅与输入偏差的大小有关,而且还与偏差存在的时间有关。只要偏差存在,输出就会不断累积,一直到偏差为零,累积才会停止。所以,积分控制可以消除剩余误差。1.2.3 PD控制当被控对象受到扰动作用后,被控变量没有立即发生变化,而是有一个时间上的延迟。因此要引入比例、微分作用,即PD控制。它比单纯的比例作用更快。尤其是对容量滞后大的对象,可以减小偏差的幅度,节省控制时间,显著改善控制质量。1.2.4 比例积分微分(P
17、ID)控制最为理想的控制当属比例-积分-微分控制。它集三者之长:既有比例作用的及时迅速,又有积分作用的消除剩余误差能力,还有微分作用的超前控制功能。当偏差扰动出现时,微分立即大幅度动作,抑制偏差的这种跃变;比例也同时起消除偏差的作用,使振荡幅度减小。由于比例作用是持久和起主要作用的控制规律,积分作用可以慢慢把剩余误差克服掉,因此可使系统比较稳定;只要三个作用的控制参数选择得当,便可充分发挥三种控制规律的优点,得到较为理想的控制效果。即当我们不完全了解一个系统和被控对象,或不能通过有效的测量手段来获得系统参数时,最适合用PID控制技术。然而伴随着新的控制系统的不断涌现,PID控制策略在控制非线性
18、、时变、强耦合及参数和结构不确定的复杂过程时,控制效果不理想。因此,它的应用受到了很大程度上的限制。1.3 模糊逻辑与模糊控制的概念1.3.1 模糊控制相关概念“模糊逻辑”的概念,其根本在于区分布尔逻辑或清晰逻辑,用来定义那些含混不清,无法量化或精确化的问题,对于冯诺依曼开创的基于“真假”推理机制,以及因此开创的电子电路和集成电路的布尔算法,模糊逻辑填补了特殊事物在取样分析方面的空白3。在模糊逻辑为基础的模糊集合理论中,某特定事物具有特色集的隶属度,他可以在“是”和“非”之间的范围内取任何值。而模糊逻辑是合理的量化数学理论,是以数学基础为根本去处理这些不确定、不精确的信息。模糊控制是基于模糊逻
19、辑描述的一个过程的控制算法。它是用模糊数学的知识模仿人脑的思维方式,根据模糊现象进行识别和判决,给出精确控制量,进而对被控对象进行控制的。对于参数精确已知的数学模型,我们可以用波特图或奈克斯特图来分析其过程以获得精确的设计参数。而对一些复杂系统,如粒子反应,气象预报等设备,建立一个合理而精确的数学模型是非常困难的。对于电力传动中的变速矢量控制问题,尽管可以通过测量得知其模型,但由于其多变量且非线性变化的特点,精确控制也是非常困难的。模糊控制技术依据与操作者的实践经验和直观推断,也依靠设计人员和研发人员的经验和知识积累。它无需建立设备模型,因此基本上是自适应的,具有很强的鲁棒性。历经多年发展,已
20、有许多成功应用模糊控制理论的案例,如Rutherford、Carter应用于冶金炉和热交换器的控制装置。1.3.2 模糊控制的优点对比常规控制办法,模糊控制有以下几点优势4:(1)模糊控制完全是在操作人员经验控制基础上实现对系统的控制,无需建立数学模型,是解决不确定系统的一种有效途径。(2)模糊控制具有较强的鲁棒性,被控对象参数的变化对模糊控制的影响不明显,可用于非线性、时变、时滞的系统,并能获得优良的控制效果。(3)由离散计算得到控制查询表,提高了控制系统的实时性、快速性。(4)控制的机理符合人们对过程控制作用的直观描述和思维逻辑,是人工智能的再现,属于智能控制。1.4 模糊控制技术的应用概
21、况国内在模糊控制方面也同样取得了显著成果。1986年,都志杰等人用单片机研制了工业用模糊控制器。随后,何钢、能秋思、刘浪舟等人相继将模糊控制方法成功地应用在碱熔釜反应温度、玻璃窑炉等控制系统中。在社会生活领域中,体现在模糊控制技术在家电中的应用,所谓模糊家电,就是根据人的经验,在电脑或者芯片的控制下实现可模仿人的思维进行操作的家用电器。几种典型的模糊家电产品如下: 模糊电视机这类电视机可根据室内光线的强弱调整电视机的亮度,根据人与电视机的距离自动调整音量,同时能够自动调节电视机的色度、清晰度和对比度。 模糊空调器模糊空调器可以灵敏地控制室内的温度。日本研制了一种模糊空调器,利用红外线传感器识别
22、房间信息(人数、温度、大小、门开关等),从而快速调整室内温度,提高了舒适感。 模糊微波炉日本夏普公司生产的RE-SEI型微波炉,内部装有12个传感器,这些传感器能对食物的重量、高度、形状和温度进行测量,并利用这些信息自动选择化霜、再热、烧烤和对流4种工作方式,并自动决定烹制时间。 模糊洗衣机以我国生产的小天鹅模糊控制全自动洗衣机为例,它能够自动识别洗衣物人重量、质地、污脏性质和程度,采用模糊控制技术来选择合适的水位、洗涤时间、水流程序等,其性能已经达到国外同类产品的水平。 模糊电动剃刀日本三洋、松下公司推出了模糊控制电动剃刀,通过利用传感器分析胡须的生长情况和面部轮廓,自动调整刀片,并选择最佳
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基于 MATLAB 模糊 PID 控制器 设计 46
限制150内