初中数学几何的动点问题专题练习-附答案版(共22页).doc
《初中数学几何的动点问题专题练习-附答案版(共22页).doc》由会员分享,可在线阅读,更多相关《初中数学几何的动点问题专题练习-附答案版(共22页).doc(22页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上动点问题专题训练1、如图,已知中,厘米,厘米,点为的中点(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动AQCDBP若点Q的运动速度与点P的运动速度相等,经过1秒后,与是否全等,请说明理由;若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使与全等?(2)若点Q以中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿三边运动,求经过多长时间点P与点Q第一次在的哪条边上相遇?xAOQPBy2、直线与坐标轴分别交于两点,动点同时从点出发,同时到达点,运动停止点沿线段运动,速度为每秒1个
2、单位长度,点沿路线运动(1)直接写出两点的坐标;(2)设点的运动时间为秒,的面积为,求出与之间的函数关系式;(3)当时,求出点的坐标,并直接写出以点为顶点的平行四边形的第四个顶点的坐标3如图,在平面直角坐标系中,直线l:y=2x8分别与x轴,y轴相交于A,B两点,点P(0,k)是y轴的负半轴上的一个动点,以P为圆心,3为半径作P.(1)连结PA,若PA=PB,试判断P与x轴的位置关系,并说明理由;(2)当k为何值时,以P与直线l的两个交点和圆心P为顶点的三角形是正三角形? 4 如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(3,4),点C在x轴的正半轴上,直线A
3、C交y轴于点M,AB边交y轴于点H (1)求直线AC的解析式; (2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位秒的速度向终点C匀速运动,设PMB的面积为S(S0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围); (3)在(2)的条件下,当 t为何值时,MPB与BCO互为余角,并求此时直线OP与直线AC所夹锐角的正切值 ACBPQED图165在RtABC中,C=90,AC = 3,AB = 5点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动
4、伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止设点P、Q运动的时间是t秒(t0)(1)当t = 2时,AP = ,点Q到AC的距离是 ;(2)在点P从C向A运动的过程中,求APQ的面积S与t的函数关系式;(不必写出t的取值范围)(3)在点E从B向C运动的过程中,四边形QBED能否成为直角梯形?若能,求t的值若不能,请说明理由;(4)当DE经过点C时,请直接写出t的值 OECBDAlOCBA(备用图)6如图,在中,点是的中点,过点的直线从与重合的位置开始,绕点作逆时针旋转,交边于点过点作交直线于点,
5、设直线的旋转角为(1)当 度时,四边形是等腰梯形,此时的长为 ;当 度时,四边形是直角梯形,此时的长为 ;(2)当时,判断四边形是否为菱形,并说明理由ADCBMN7如图,在梯形中,动点从点出发沿线段以每秒2个单位长度的速度向终点运动;动点同时从点出发沿线段以每秒1个单位长度的速度向终点运动设运动的时间为秒(1)求的长(2)当时,求的值(3)试探究:为何值时,为等腰三角形8如图1,在等腰梯形中,是的中点,过点作交于点,.(1)求点到的距离;(2)点为线段上的一个动点,过作交于点,过作交折线于点,连结,设.当点在线段上时(如图2),的形状是否发生改变?若不变,求出的周长;若改变,请说明理由;当点在
6、线段上时(如图3),是否存在点,使为等腰三角形?若存在,请求出所有满足要求的的值;若不存在,请说明理由.ADEBFC图4(备用)ADEBFC图5(备用)ADEBFC图1图2ADEBFCPNM图3ADEBFCPNM(第25题)9如图,正方形 ABCD中,点A、B的坐标分别为(0,10),(8,4),点C在第一象限动点P在正方形 ABCD的边上,从点A出发沿ABCD匀速运动,同时动点Q以相同速度在x轴正半轴上运动,当P点到达D点时,两点同时停止运动,设运动的时间为t秒(1)当P点在边AB上运动时,点Q的横坐标(长度单位)关于运动时间t(秒)的函数图象如图所示,请写出点Q开始运动时的坐标及点P运动速
7、度;(2)求正方形边长及顶点C的坐标;(3)在(1)中当t为何值时,OPQ的面积最大,并求此时P点的坐标;(4)如果点P、Q保持原速度不变,当点P沿ABCD匀速运动时,OP与PQ能否相等,若能,写出所有符合条件的t的值;若不能,请说明理由10数学课上,张老师出示了问题:如图1,四边形ABCD是正方形,点E是边BC的中点,且EF交正方形外角的平行线CF于点F,求证:AE=EF经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM=EC,易证,所以在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E是边BC的中点”改为“点E是边BC上(除B,C外)的任意一点”
8、,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;ADFCGEB图1ADFCGEB图2ADFCGEB图3 (2)小华提出:如图3,点E是BC的延长线上(除C点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由11已知一个直角三角形纸片,其中如图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边交于点,与边交于点xyBOA()若折叠后使点与点重合,求点的坐标;xyBOA()若折叠后点落在边上的点为,设,试写出关于的函数解析式,并确定的取值范围;()
9、若折叠后点落在边上的点为,且使,求此时点的坐标 xyBOA12图(1)ABCDEFMN如图(1),将正方形纸片折叠,使点落在边上一点(不与点,重合),压平后得到折痕当时,求的值方法指导:为了求得的值,可先求、的长,不妨设:=2类比归纳在图(1)中,若则的值等于 ;若则的值等于 ;若(为整数),则的值等于 (用含的式子表示)联系拓广图(2)NABCDEFM 如图(2),将矩形纸片折叠,使点落在边上一点(不与点重合),压平后得到折痕设则的值等于 (用含的式子表示) 12.如图所示,在直角梯形ABCD中,AD/BC,A90,AB12,BC21,AD=16。动点P从点B出发,沿射线BC的方向以每秒2个
10、单位长的速度运动,动点Q同时从点A出发,在线段AD上以每秒1个单位长的速度向点D运动,当其中一个动点到达端点时另一个动点也随之停止运动。设运动的时间为t(秒)。(1)设DPQ的面积为S,求S与t之间的函数关系式;(2)当t为何值时,四边形PCDQ是平行四边形?(3)分别求出出当t为何值时, PDPQ, DQPQ ?13.三角形ABC中,角C=90度,角CBA=30度,BC=20根号3。一个圆心在A点、半径为6的圆以2个单位长度/秒的速度向右运动,在运动的过程中,圆心始终都在直线AB上,运动多少秒时,圆与ABC的一边所在的直线相切。1.解:(1)秒,厘米,厘米,点为的中点,厘米又厘米,厘米,又,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初中 数学 几何 问题 专题 练习 答案 22
限制150内