必修五1.1.3-正弦定理和余弦定理综合问题导学案及课时作业(共6页).doc
《必修五1.1.3-正弦定理和余弦定理综合问题导学案及课时作业(共6页).doc》由会员分享,可在线阅读,更多相关《必修五1.1.3-正弦定理和余弦定理综合问题导学案及课时作业(共6页).doc(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上1.1.3 正弦定理和余弦定理综合问题【目标明晰】1.知识与技能掌握在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形;三角形各种类型的判定方法;三角形面积定理的应用. 利用正、余弦定理可判断三角形的形状,其有两种通常途径2.过程与方法通过引导学生分析,解答三个典型例子,使学生学会综合运用正、余弦定理,三角函数公式及三角形有关性质求解三角形问题.教学重点、难点1.重点:在已知三角形的两边及其中一边的对角解三角形时,有两解或一解或无解等情形;三角形各种类型的判定方法;三角形面积定理的应用. 利用正、余弦定理可判断三角形的形状,其有两种通常途径2.难点
2、:正、余弦定理与三角形的有关性质的综合运用.复习回顾1.解三角形的四种类型:(1)已知三边解三角形,用 定理;(2)已知两边和夹角解三角形,用 定理;(3)已知两边和其中一边的对角解三角形,用 定理;(有三种情况:“有两解,一解,或无解”,用大边对大角进行判断。)(4)已知两角和任一边解三角形,用 定理。2.判断三角形的形状,主要有两条途径:(1)化边为角;(2)化角为边。具体方法:通过正弦定理,通过余弦定理,通过面积公式。【交流释疑】(二)合作探讨类型一 利用正、余弦定理解三角形例1在ABC中,已知,求b及A;变式:设锐角三角形ABC的内角A,B,C的对边分别为a,b,c,()求B的大小;(
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 必修 1.1 正弦 定理 余弦 综合 问题 导学案 课时 作业
限制150内