人教版七年级数学(下册)第九章不等式和不等式组教案(共17页).doc
《人教版七年级数学(下册)第九章不等式和不等式组教案(共17页).doc》由会员分享,可在线阅读,更多相关《人教版七年级数学(下册)第九章不等式和不等式组教案(共17页).doc(17页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上第九章 不等式与不等式组教材内容本章的主要内容包括:一元一次不等式(组)及其相关概念,不等式的性质,一元一次不等式(组)的解法及解集的几何表示,利用一元一次不等式分析、解决实际问题。教材以实际问题为例引出不等式及其解集的概念,然后类比一元一次方程,引出一元一次不等式的概念。为进一步讨论不等式的解法,接着讨论了不等式的性质,并运用它们解简单的不等式。在此基础上,教材从一个选择购物商店问题入手,对列、解一元一次不等式作了进一步的讨论,并归纳一元一次不等式与一元一次方程的异同及应注意的问题。最后,结合三角形三条边的大小关系,引进了一元一次不等式组及其解集,并讨论了一元一次不
2、等式组的解法。教学目标知识与技能1、了解一元一次不等式(组)及其相关概念;2、理解不等式的性质;3、掌握一元一次不等式(组)的解法并会在数轴上表示解集;4、学会应用一元一次不等式(组)解决有关的实际问题。过程与方法1、通过观察、对比和归纳,探索不等式的性质,在利用它解一元一次不等式(组)的过程中,体会其中蕴涵的化归思想;2、经历“把实际问题抽象为一元一次不等式”的过程,体会一元一次不等式(组)是刻画现实世界中不等关糸的一种有效的数学模型.情感、态度与价值观1、通过类比一元一次方程的解法从而更好地去掌握一元一次不等式的解法,树立辩证唯物主义的思想方法;2、在利用一元一次不等式(组)解决问题的过程
3、中,感受数学的应用价值,提高分析问题、解决问题的能力。重点难点 一元一次不等式(组)的解法及应用是重点;一元一次不等式(组)的解集和应用一元一次不等式(组)解决实际问题是难点。 课时分配9.1不等式 4课时9.2实际问题与一元一次不等式 3课时9.3一元一次不等式组 2课时9.4课题学习 利用不等式分析比赛 1课时本章小结 2课时9.1.1不等式及其解集教学目标1、了解不等式和一元一次不等式的概念;2、理解不等式的解和解集,能正确表示不等式的解集。重点难点 不等式、一元一次不等式、不等式的解、解集的概念是重点;不等式解集的理解与表示是难点。教学过程 一、情景导入投影1一辆匀速行驶的汽车在11:
4、20时距离A地50千米,要在12:00以前驶过A地,车速应该具备什么条件?题目中有等量关系吗?没有。那是什么关系呢?从时间上看,汽车要在12:00之前驶过A地,则以这个速度行驶50千米所用的时间不到2/3小时,即汽车驶过A地的时间小于2/3小时。从路程上看,汽车要在12:00之前驶过A地,则以这个速度行驶2/3小时的路程要超过50千米,即汽车2/3小时走的路程大于50千米。这些是不等关系。二、不等式的概念若设车速为每小时x千米,你能用一个式子表示上面的关系吗?50/x2/3 或2/3x5 像这样用“”或“”、“6 (5) 2m 50成立: 76,73,79,80,74. 9,75.1,90,6
5、0 76, 79,80, 75.1,90能使不等式2/3x 50成立。我们把能使不等式成立的未知数的值,叫不等式的解.我们看到不等式的解不是一个, 你还能找出这个不等式的其他解吗?它的解到底有多少个? 如77、81、101等等,所有大于75的数都是这个不等式的解,它的解有无数个。一般地,一个含有未知数的不等式的所有的解,组成这个不等式的解集。如所有大于75的数组成不等式2/3x 50的解集,写作x 7 5,这个解集可以用数轴来表示。o75求不等式的解集的过程叫做解不等式四、例题例投影4在数轴上表示下列不等式的解集:(1)x-1;(2)x-1;(3)x”、 “3 , 5+2 3+2, 5-2 3
6、-2;(2)-12, 65 25, 6(-5) 2(-5);(4)-2”, “b,则2a 2b;(2)若-2y10,则y -5;(3)若a0,则ac-1 bc-1;(4)若ab,c”或“,(2),(4)。四、 课堂练习1、判断正误:投影3(1)a b ab bb(2)a b a/3b/3(3)a b 2a 0 a 02、根据下列已知条件,说出a与b的不等关系,并说明依据不等式哪一条性质。投影4(1)a3 b3 (2)a/3b/3(3)4a 4b (4)1-1/2a1-1/2b3、填空投影5(1) 2a 3a a是 数(2)a/3a/2 a是 数(3)ax 1 a是 数作业:课本128面4、5、
7、7。9.1.2 不等式的性质(二)教学目标掌握一元一次不等式的解法。 重点难点 一元一次不等式的解法是重点;不等式性质3在解不等式中的运用是难点。教学过程一、复习导入投影1不等式的性质有哪些?不等式的性质与等式的性质有什么不同?和利用等式的性质可以解方程一样,利用不等式的性质可以解不等式。二、不等式的解法例1 解下列不等式,并在数轴上表示解集:投影2(1) x726 (2)3x 2x1(3)2/3x 50 (4)-4x3分析:解不等式最终要变成什么形式呢?就是要使不等式逐步化为xa或x a的形式。解:(1) x726根据等式的性质1,得x7+726+7 x33 33O(2)3x 2x1 根据等
8、式的性质1,得3x-2x 2x1-2x x1 1O(3)2/3x 50根据等式的性质2,得x 503/2 x 7 5 O75(4)-4x3根据等式的性质3,得 x-3/4。 O-3/4注意:运用不等式的性质1,实际上是方程中的“移项”。例2 解不等式:1/2x-12/3(2x+1) 投影1分析:我们知道,解不等式的依据是不等式的性质,而不等式的性质与等式的性质类似,因此,解一元一次不等式的步骤与解一元一次方程的步骤基本相同。解:去分母,得 3x-64(2x+1)去括号,得 3x-68x+4移项,得 3x-8x4+6合并,得-5x10系数化为1,得 x-2归纳:解一元一次不等式的步骤:(1)去分
9、母;(2)去括号;(3)移项;(4)合并同类项;(5)糸数化为1。四、课堂练习课本127面练习1题;134面练习1题。作业:课本134面1题。9.1.2 不等式的性质(三)教学目标运用不等式解决有关的问题,初步认识一元一次不等式的应用价值。重点难点 不等式的运用是重点;寻找不等关系是难点。教学过程一、复习新课上节课我们学习了不等式的解法,请问:解不等式的依据是什么?解不等式的步骤是什么?有很多问题与不等式相联系,需要运用不等式来解决。二、不等式的初步应用例1投影1三角形任意两边之差与第三边有着怎样的大小关系?分析:三角形任意两边之和与第三边有着怎样的大小关系? abc解:设 a、b、c为任意一
10、个三角形的三条边的长,则a+bc, b+ca, c+ab.移项,得ac-b, ba-c, cb-a.上面的式子说明了什么?三角形中任意两边之差小于第三边。归纳:三角形任意两边之和大于第三边,任意两边之差小于第三边。例2 投影2 已知x=3-2a是不等式1/5(x-3)x-3/5的解,求a的取值范围。分析:由不等式解的意义,你能知道什么?解:依题意,得 1/5(3-2a) -3(3-2a) -3/5 1/5(-2a)12/5-2a -2a12-10a 8a12 a3/2例3投影3 某长方体形状的容器长5 cm,宽3 cm,高10 cm.容器内原有水的高度为3 cm,现准备继续向它注水用V(单位:
11、 cm3)表示新注入水的体积,写出V的取值范围。分析:新注入水的体积应满足什么条件?新注入水的体积与原有水的体积的和不能超过容器的体积。解:依题意,得 V+3533510 V105。思考:这是问题的答案吗?为什么?不是,因为新注入水的体积不能是负数,所以V0。 0V105在数轴上表示为: O105注意:解答实际问题时,一定要考虑问题的实际意义。三、课堂练习1、课本127面练习2;2、补充题:投影4小华准备用21元钱买笔和笔记本,已知每支笔3元,每本笔记本2.2元,她买了2本笔记本,请问她最多还能买几支笔?作业:课本134面2、3;128面9;129面10。第九章不等式复习一(9.1)一、双基回
12、顾1、不等式:用等号(、)连接起来的式子,叫做不等式。1用不等式表示:x与1的差是负数: ; a的1/2与b的3倍大于2 ;x、y的平方和是非负数 。2、不等式的解和解集使不等式成立的未知数的值叫做不等式的解。一个含有未知数的不等式的所有解,组成这个不等式的解集。注意:解集包括解,所有的解组成解集;解是一个数,解集是一个范围。2判断下列说法是否正确:4是不等式x36的解;不等式x21的解是x1;3是不等式x25的一个解;不等式x14的解集是x2.3、一元一次不等式:含有一个未知数并且未知数的次数是1的不等式叫做一元一次不等式。3下列不等式是一元一次不等式的是 .3x+5=1;2y-15;2/x
13、+13;5+28;3+x2x.4、不等式的性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.即 如果ab,那么acbc.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变. 即 如果ab,c0,那么acbc(或a/cb/c).(3)不等式两边乘(或除以)同一个负数,不等号的方向改变. 即 如果ab,c0,那么acbc(或a/cb/c).注意:不等式的性质与等式的性质有相通之处,又有不同之点;不等式的性质是解不等式的依据。4已知ab,填空:a+3 b+3, 2a 2b, - a/3 b/3,ab 0.5、解一元一次不等式5解一元一次不等式: 2x5x+6,并在数轴上表示
14、解集。二例题导引例1 判断正误:若ab,则 ac2bc2;若ac2bc2 ,则ab;若2 a+12b+1, 则ab;若ab,则12 a12b.例2 解下列不等式,并把它们的解集在数轴上表示出来。(1)3(1x)2(x+9); (2) .例3 a取什么自然数时,关于x的方程23x= a解是非负数?例4 小明和小丽决定把省下来的零用钱存起来,这个月小明顾虑了168元,小丽顾虑了85元,从下个月开始小明每月顾虑16元,而小丽每月存25元,问几个月后小丽的存款数能超过小明?三、练习提高夯实基础1、已知x的1/2与5的差不小于3,用不等式表示为 。2、若不等式组的解集为1x,则图中表示正确的是( ) A
15、 B C D3、设A 、B 、C 表示三种不同的物体,现用天平称了两次,情况如图所示,那么“A”、“ B ”、“C ”这三种物体按质量从大到小的顺序排应为( )(A) A B C (B)C A B (C) B A C(D) B C A 4、如果xy,下列各式中不正确的是 A、1/2x1/2y B、1/2x1/2yC、1/2 x1/2 y D、 1/2 x1/2 y5、当x 时,2-3x为非正数.6、已知点M(5m,-3)在第三象限,则m的取值范围是 。7、当x 时,式子3x5的值大于5x + 3的值。8、阳阳从家到学校的路程为2400米,他早晨8点离开家,要在8点30分到8点40分之间到学校,
16、如果用x表示他的速度(单位:米/分),则x的取值范围为 。9、已知x=3-2a是不等式1/5(x-3)x-3/5的解,那么a的取值范围是 。10、解下列不等式,并在数轴上表示解集。(1)4x-1-2x+3; (2) 3(x+1) 2 (3)1/2 x-2/3 x-2 (4) 1/2x-71/6(9x-1)11、已知关于的方程的解是非正数,求的取值范围.能力提高12、已知a是一个数,且xy,则下列不等式中,正确的是( ) 、axayB、axay、a2xa2yD、a2xa2y13、不等式3(x-2)x-1的自然数解是 14、不等式axa的解集为x1,则的取值范围是( ) A 、a 0 B、a0 C
17、、a0 D、a015、如果三个连续自然数的和不大于,那么这样自然数共有组_。16、解下列不等式,并分别把它们的解集在数轴上表示出来.(1)3-2(x-1)5x; (2)3/4-8x3-11/2x (3)4/5-(2x-3)/20 (4) 16、k取什么值时,式子1/2(1-5k-1/3k2)+2/3(k2/4-k)的值,(1)小于0?(2)不小于0?17、某学校把学生的笔试、实践能力两项成绩分别按60%,40%的比例计入学期总成绩,小明实践能力这一项成绩是81分,若想学期总成绩不低于90分,则笔试的成绩至少是多少分?探索创新18、已知方程组,为何值时,?9.2 实际问题与一元一次不等式(一)
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 七年 级数 下册 第九 不等式 教案 17
限制150内