基于小波分析的图像处理报告(共18页).doc
《基于小波分析的图像处理报告(共18页).doc》由会员分享,可在线阅读,更多相关《基于小波分析的图像处理报告(共18页).doc(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上题目:小波分析在图像处理中的应用专 业: 学 号: 学生姓名: 指导教师:年 月 日目录1 引言小波分析属于时频分析的一种,传统的信号分析是建立在傅立叶变换的基础上的,由于傅立叶分析使用的是一种全局的变换,要么完全在时域,要么完全在时域,要么完全在频域,因此无法表述信号的时频局域性质,而这种性质恰恰是非平稳信号最根本和最关键的性质。为了分析和处理非平稳信号,人们对傅立叶分析进行了推广乃至根本性的革命,提出并发展了一系列新的信号分析理论:短时傅立叶变换、Gabor变换、时频分析、小波变换、分数阶傅立叶变换、线调频小波变换、循环统计量理论和调幅-调频信号分析等。其中,短时
2、傅立叶变换和小波变换也是应传统的傅立叶变换不能够满足信号处理的要求而产生的。短时傅立叶变换分析的基本思想是:假定非平稳信号在分析窗函数g(t)的一个短时间间隔内是平稳(伪平稳)的,并移动分析窗函数,使在不同的有限时间宽度内是平稳信号,从而计算出各个不同时刻的功率谱。但从本质上讲,短时傅立叶变换是一种单一分辨率的信号分析方法,因为它使用一个固定的短时窗函数。因而短时傅立叶变换在信号分析上还是存在着不可逾越的缺陷。小波变换是一种信号的时间尺度分析方法,它具有多分辨率分析的特点,而且在时频两域都具有表征信号局部特征的能力,是一种窗口大小固定不变,但其形状可改变,时间窗和频率窗都可以改变的时频局部化分
3、析方法。即在低频部分具有较高的频率分辨率,在高频部分具有较高的时间分辨率和较低的频率分辨率,很适合于探测正常信号中夹带的瞬态反常现象并展示其成分,所以被誉为分析信号的显微镜,利用连续小波变换进行动态系统故障检测与诊断具有良好的效果。2 小波分析的基本理论2.1 概述小波分析是建立在泛函数分析、Fourier分析、样条分析及调和分析基础上的新的分析处理工具。它又被称为多分辨率分析,在时域和频域同时具有良好的局部化特性,常被誉为信号分析的“数学显微镜”。近十多年来,小波分析的理论和方法在信号处理、语言分析、模式识别、数据压缩、图像处理、数字水印、量子物理等专业和领域得到了广泛的应用。近些年,小波分
4、析被广泛用于图像的压缩、降噪、平滑和融合等方面,在人脸识别、医学图像处理、机器人视觉、数字电视等领域受到人们越来越多的重视。基于二维小波分析进行图像处理具有坚实的理论基础,MATLAB软件在小波工具箱中也提供了强大的图像处理功能,包括采用命令行和图形用户接口等。2.2 小波变换基础2.2.1一维连续小波变换定义:设,其傅立叶变换为,当满足允许条件(完全重构条件或恒等分辨条件) (2.1)时,我们称为一个基本小波或母小波。将母函数经伸缩和平移后得 (2.2)称其为一个小波序列。其中a为伸缩因子,b为平移因子。对于任意的函数的连续小波变换为 (2.3)其重构公式(逆变换)为 (2.4)由于基小波生
5、成的小波在小波变换中对被分析的信号起着观测窗的作用,所以还应该满足一般函数的约束条件 (2.5)故是一个连续函数。这意味着,为了满足完全重构条件式,在原点必须等于0,即 (2.6)为了使信号重构的实现在数值上是稳定的,处理完全重构条件外,还要求小波的傅立叶变化满足下面的稳定性条件: (2.7)式中0AB从稳定性条件可以引出一个重要的概念。定义(对偶小波)若小波满足稳定性条件(2.7)式,则定义一个对偶小波,其傅立叶变换由下式给出:(2.8)注意,稳定性条件(2.7)式实际上是对(2.8)式分母的约束条件,它的作用是保证对偶小波的傅立叶变换存在的稳定性。值得指出的是,一个小波的对偶小波一般不是唯
6、一的,然而,在实际应用中,我们又总是希望它们是唯一对应的。因此,寻找具有唯一对偶小波的合适小波也就成为小波分析中最基本的问题。连续小波变换具有以下重要性质:(1)线性性:一个多分量信号的小波变换等于各个分量的小波变换之和(2)平移不变性:若f(t)的小波变换为,则的小波变换为(3)伸缩共变性:若f(t)的小波变换为,则f(ct)的小波变换为,(4)自相似性:对应不同尺度参数a和不同平移参数b的连续小波变换之间是自相似的。(5)冗余性:连续小波变换中存在信息表述的冗余度。小波变换的冗余性事实上也是自相似性的直接反映,它主要表现在以下两个方面:(1)由连续小波变换恢复原信号的重构分式不是唯一的。也
7、就是说,信号f(t)的小波变换与小波重构不存在一一对应关系,而傅立叶变换与傅立叶反变换是一一对应的。(2)小波变换的核函数即小波函数存在许多可能的选择(例如,它们可以是非正交小波、正交小波、双正交小波,甚至允许是彼此线性相关的)。小波变换在不同的(a,b)之间的相关性增加了分析和解释小波变换结果的困难,因此,小波变换的冗余度应尽可能减小,它是小波分析中的主要问题之一。2.2.2 高维连续小波变换对,公式 (2.9)存在几种扩展的可能性,一种可能性是选择小波使其为球对称,其傅立叶变换也同样球对称,(2.10)并且其相容性条件变为(2.11)对所有的。 (2.12)这里,=,其中且,公式(2.6)
8、也可以写为(2.13)如果选择的小波不是球对称的,但可以用旋转进行同样的扩展与平移。例如,在二维时,可定义(2.14)这里,相容条件变为(2.15)该等式对应的重构公式为(2.16)对于高于二维的情况,可以给出类似的结论。2.3 离散小波变换在实际运用中,尤其是在计算机上实现时,连续小波必须加以离散化。因此,有必要讨论连续小波和连续小波变换的离散化。需要强调指出的是,这一离散化都是针对连续的尺度参数a和连续平移参数b的,而不是针对时间变量t的。这一点与我们以前习惯的时间离散化不同。在连续小波中,考虑函数:这里,且,是容许的,为方便起见,在离散化中,总限制a只取正值,这样相容性条件就变为 (2.
9、17)通常,把连续小波变换中尺度参数a和平移参数b的离散公式分别取作,这里,扩展步长是固定值,为方便起见,总是假定(由于m可取正也可取负,所以这个假定无关紧要)。所以对应的离散小波函数即可写作(2.18)而离散化小波变换系数则可表示为(2.19)其重构公式为(2.20)C是一个与信号无关的常数。然而,怎样选择和,才能够保证重构信号的精度呢?显然,网格点应尽可能密(即和尽可能小),因为如果网格点越稀疏,使用的小波函数和离散小波系数就越少,信号重构的精确度也就会越低。3 几种常用的小波3.1 Haar小波A.Haar于1990年提出一种正交函数系,定义如下: (3.1)这是一种最简单的正交小波,即
10、 (3.2)3.2 Daubechies(dbN)小波系该小波是Daubechies从两尺度方程系数出发设计出来的离散正交小波。一般简写为dbN,N是小波的阶数。小波和尺度函数吁中的支撑区为2N-1。的消失矩为N。除N1外(Haar小波),dbN不具对称性即非线性相位;dbN没有显式表达式(除N1外)。但的传递函数的模的平方有显式表达式。假设,其中,为二项式的系数,则有 (3.3)其中 3.3 Biorthogonal(biorNr.Nd)小波系Biorthogonal函数系的主要特征体现在具有线性相位性,它主要应用在信号与图像的重构中。通常的用法是采用一个函数进行分解,用另外一个小波函数进行
11、重构。Biorthogonal函数系通常表示为biorNr.Nd的形式:Nr=1 Nd=1,3,5Nr=2 Nd=2,4,6,8Nr=3 Nd=1,3,5,7,9Nr=4 Nd=4Nr=5 Nd=5Nr=6 Nd=8其中,r表示重构,d表示分解。3.4 Coiflet(coifN)小波系coiflet函数也是由Daubechies构造的一个小波函数,它具有coifN(N=1,2,3,4,5)这一系列,coiflet具有比dbN更好的对称性。从支撑长度的角度看,coifN具有和db3N及sym3N相同的支撑长度;从消失矩的数目来看,coifN具有和db2N及sym2N相同的消失矩数目。3.5 S
12、ymletsA(symN)小波系Symlets函数系是由Daubechies提出的近似对称的小波函数,它是对db函数的一种改进。Symlets函数系通常表示为symN(N=2,3,8)的形式。3.6 Mexican Hat(mexh)小波Mexican Hat函数为 (3.4)它是Gauss函数的二阶导数,因为它像墨西哥帽的截面,所以有时称这个函数为墨西哥帽函数。墨西哥帽函数在时间域与频率域都有很好的局部化,并且满足 (3.5)由于它的尺度函数不存在,所以不具有正交性。3.7 Meyer函数Meyer小波函数和尺度函数都是在频率域中进行定义的,是具有紧支撑的正交小波。 (3.6)其中,为构造M
13、eyer小波的辅助函数,且有 (3.7)4小波分析用于图像压缩4.1 图像压缩概述通常所说的图像压缩主要指无损压缩(无失真)和有损压缩(有失真)两大类。所谓无损压缩是指图像数据经压缩后可以完全得到复原,复原后的图像与原始图像完全一致。有损压缩则是指经它处理的数据在基本保持原图像的特征的前提下,不可避免地要丢掉一部分原始图像信息。图像能够进行压缩的主要原因是:(1)原始图像信息存在着很大的冗余度,数据之间存在着相关性,如相邻像素之间色彩的相关性等,消息中这些冗余信息将会产生额外的编码。如果去掉冗余信息,就会减少消息所占的空间。(2)在美图系统的应用领域中,人眼作为图像信息的接收端,其视觉对于边缘
14、急剧变化不敏感(视觉掩盖效应),以及人眼对图像的亮度信息敏感,而对颜色分辨率弱等,因此在高压缩比的情况下,解压缩后的图像信号仍比较满意。基于上述两点,发展出数据压缩的两类方法:一种是将相同的或相似的数据或数据特征归类,使用较少的数据量描述原始数据,达到减少数据量的目的,这种压缩一般为无损压缩;另一种是利用人眼的视觉特性有针对性地简化不重要的数据,以减少总的数据量,这种压缩一般为有损压缩。只要损失的数据不太影响人眼主观接受的效果,即可采用。基于小波分析的图像压缩方法很多,比较成功的有小波包、小波变换零数压缩、小波变换矢量量化压缩等。一个图像作小波分解后,可得到一系列不同分辨率的子图像,不同分辨率
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基于 分析 图像 处理 报告 18
限制150内