“化归”思想在小学数学教学中的运用(共3页).doc
《“化归”思想在小学数学教学中的运用(共3页).doc》由会员分享,可在线阅读,更多相关《“化归”思想在小学数学教学中的运用(共3页).doc(3页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上“化归”思想在小学数学教学中的运用 一、“化归”思想的内涵 “化归”思想,是世界数学家们都十分重视的一种数学思想方法,从字面意思上讲,“化归”理解为“转化”和“归结”两种含义,即不是直接寻找问题的答案,而是寻找一些熟悉的结果,设法将面临的问题转化为某一规范的问题,以便运用已知的理论、方法和技术使问题得到解决。而渗透化归思想的核心,是以可变的观点对所要解决的问题进行变形,就是在解决数学问题时,不是对问题进行直接进攻,而是采取迂回的战术,通过变形把要解决的问题,化归为某个已经解决的问题。从而求得原问题的解决。化归思想不同于一般所讲的“转化”或“变换”。它的基本形式有:化未
2、知为已知,化难为易,化繁为简,化曲为直。匈牙利著名数学家罗莎彼得在他的名著无穷的玩艺中,通过一个十分生动而有趣的笑话,来说明数学家是如何用化归的思想方法来解题的。有人提出了这样一个问题:“假设在你面前有煤气灶,水龙头、水壶和火柴,你想烧开水,应当怎样去做?”对此,某人回答说:“在壶中灌上水,点燃煤气,再把壶放在煤气灶上。”提问者肯定了这一回答,但是,他又追问道:“如果其他的条件都没有变化,只是水壶中已经有了足够的水,那么你又应该怎样去做?”这时被提问者一定会大声而有把握地回答说:“点燃煤气,再把水壶放上去。”但是更完善的回答应该是这样的:“只有物理学家才会按照刚才所说的办法去做,而数学家却会回
3、答:只须把水壶中的水倒掉,问题就化归为前面所说的问题了”。“把水倒掉”,这就是化归,这就是数学家常用的方法。翻开数学发展的史册,这样的例子不胜枚举,著名的哥尼斯堡七桥问题便是一个精彩的例证。二、“化归”思想在小学数学教学中的渗透1、数与代数-在简单计算中体验“化归” 例:计算48534748 机械地应用乘法分配律公式进行计算,学生不容易真正理解。将48这一数化归成物,即看到了相同的数48,想起了红富士苹果,以物红富士苹果代替数48,相同的数48是化归的对象,红富士苹果是实施化归的途径,于是48534748就转化成求53个苹果与47个苹果之和的问题是化归的目标。 48534748 48(5347
4、) 48100 4800,得到问题的解决。例2:解方程5xx=4 x是化归的对象,把未知数x化归成物红富士苹果,红富士苹果是实施化归的途径,于是方程5xx=4 转化为5个苹果 1个苹果4的问题是化归的目标。 5xx=4 得 4x=4 x=44 x=1 通过以图片中的红富士苹果代替抽象的字母x,问题得以解决,同时学生对字母表示数从广义上得以理解 。 教学正负数加减法运算是教材的重点和难点,学生对:“ ()同号两数相加,取原来的符号,并把绝对值相加,()异号两数相加,取绝对值较大的加数的符号,较大的绝对值减去较小的绝对值”。不容易真正 理解和掌握,原因是“绝对值”的概念及名词对小学生来说是陌生的。
5、 在教学中把正数、负数的绝对值转化为正数来考虑,正负数相加时先确定符号,然后再化归为两个正数之间的运算。 ()同号两数相加,符号不变(即取原来加数的符号),看作两个正数相加(即并把绝对值相加)。 ()异号两数相加,符号从大(即指绝对值较大的加数的符号),看作两个正数大减小(即较大的绝对 值减去减小的绝对值)。 在这里“x绝对值”是化归的对象,正数是实施化归的途径,两个正数相加以及大的正数减去小的正数是 化归的目标。 由于学生对两个正数相加及正数中大数减小数是已掌握的知识,然后返回去熟悉理解“绝对值”的概念, 这样有利于学生对正负数加减运算的真正掌握。2、空间与图形-在动手操作中探索“化归”学生
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 思想 小学 数学 教学 中的 运用
限制150内