高中数学知识点总结五:概率统计(共8页).doc
《高中数学知识点总结五:概率统计(共8页).doc》由会员分享,可在线阅读,更多相关《高中数学知识点总结五:概率统计(共8页).doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上创想教育个性化辅导讲义教师姓名: ; 授课日期: 年 月 日; 星期 ;上课时间: 教学计划编号课时数:2h 3h班型:1对1辅导 精品小班学生姓名年级科目课程内容形式新授课 习题课 知识串讲课 学习方法课 阶段性考试 讲评试卷第一步:本讲知识要点及考点分析本讲知识点标题难度分级考纲要求考频分级常考题型及高考占分填写说明难度分级:容易、较易、一般、较难、困难 考纲要求:了解、理解、掌握、灵活运用、综合运用考频分级:必考、常考、高频、中频、低频 常考题型与高考占分:近五年高考试题分析得出第二步:本讲专题知识梳理(教育理念:没有不好的学生,只有不会教的老师!) 概率考试内
2、容:数学探索版权所有随机事件的概率等可能性事件的概率互斥事件有一个发生的概率相互独立事件同时发生的概率独立重复试验数学探索版权所有考试要求:数学探索版权所有(1)了解随机事件的发生存在着规律性和随机事件概率的意义数学探索版权所有(2)了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率。数学探索版权所有(3)了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率数学探索版权所有(4)会计算事件在n次独立重复试验中恰好发生次的概率知识要点1. 概率:随机事件A的概率是频率的稳定值,反之,频率是概率的近似值.2. 等可能
3、事件的概率:如果一次试验中可能出现的结果有年n个,且所有结果出现的可能性都相等,那么,每一个基本事件的概率都是,如果某个事件A包含的结果有m个,那么事件A的概率.3. 互斥事件:不可能同时发生的两个事件叫互斥事件. 如果事件A、B互斥,那么事件A+B发生(即A、B中有一个发生)的概率,等于事件A、B分别发生的概率和,即P(A+B)=P(A)+P(B),推广:.对立事件:两个事件必有一个发生的互斥事件叫对立事件. 例如:从152张扑克牌中任取一张抽到“红桃”与抽到“黑桃”互为互斥事件,因为其中一个不可能同时发生,但又不能保证其中一个必然发生,故不是对立事件.而抽到“红色牌”与抽到黑色牌“互为对立
4、事件,因为其中一个必发生.注意:i.对立事件的概率和等于1:. ii.互为对立的两个事件一定互斥,但互斥不一定是对立事件.相互独立事件:事件A(或B)是否发生对事件B(或A)发生的概率没有影响.这样的两个事件叫做相互独立事件. 如果两个相互独立事件同时发生的概率,等于每个事件发生的概率的积,即P(AB)=P(A)P(B). 由此,当两个事件同时发生的概率P(AB)等于这两个事件发生概率之和,这时我们也可称这两个事件为独立事件.例如:从一副扑克牌(52张)中任抽一张设A:“抽到老K”;B:“抽到红牌”则 A应与B互为独立事件看上去A与B有关系很有可能不是独立事件,但.又事件AB表示“既抽到老K对
5、抽到红牌”即“抽到红桃老K或方块老K”有,因此有.推广:若事件相互独立,则.注意:i. 一般地,如果事件A与B相互独立,那么A 与与B,与也都相互独立.ii. 必然事件与任何事件都是相互独立的.iii. 独立事件是对任意多个事件来讲,而互斥事件是对同一实验来讲的多个事件,且这多个事件不能同时发生,故这些事件相互之间必然影响,因此互斥事件一定不是独立事件.独立重复试验:若n次重复试验中,每次试验结果的概率都不依赖于其他各次试验的结果,则称这n次试验是独立的. 如果在一次试验中某事件发生的概率为P,那么在n次独立重复试验中这个事件恰好发生k次的概率:.4. 对任何两个事件都有概率与统计考试内容:抽
6、样方法.总体分布的估计数学探索版权所有总体期望值和方差的估计数学探索版权所有考试要求:数学探索版权所有(1)了解随机抽样了解分层抽样的意义,会用它们对简单实际问题进行抽样数学探索版权所有(2)会用样本频率分布估计总体分布数学探索版权所有(3)会用样本估计总体期望值和方差知识要点一、随机变量.1. 随机试验的结构应该是不确定的.试验如果满足下述条件:试验可以在相同的情形下重复进行;试验的所有可能结果是明确可知的,并且不止一个;每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果.它就被称为一个随机试验.2. 离散型随机变量:如果对于随机变量可能取的值,可以按一
7、定次序一一列出,这样的随机变量叫做离散型随机变量.若是一个随机变量,a,b是常数.则也是一个随机变量.一般地,若是随机变量,是连续函数或单调函数,则也是随机变量.也就是说,随机变量的某些函数也是随机变量.设离散型随机变量可能取的值为:取每一个值的概率,则表称为随机变量的概率分布,简称的分布列.P有性质; .注意:若随机变量可以取某一区间内的一切值,这样的变量叫做连续型随机变量.例如:即可以取05之间的一切数,包括整数、小数、无理数.3. 二项分布:如果在一次试验中某事件发生的概率是P,那么在n次独立重复试验中这个事件恰好发生k次的概率是:其中 于是得到随机变量的概率分布如下:我们称这样的随机变
8、量服从二项分布,记作B(np),其中n,p为参数,并记.二项分布的判断与应用.二项分布,实际是对n次独立重复试验.关键是看某一事件是否是进行n次独立重复,且每次试验只有两种结果,如果不满足此两条件,随机变量就不服从二项分布.当随机变量的总体很大且抽取的样本容量相对于总体来说又比较小,而每次抽取时又只有两种试验结果,此时可以把它看作独立重复试验,利用二项分布求其分布列.4. 几何分布:“”表示在第k次独立重复试验时,事件第一次发生,如果把k次试验时事件A发生记为,事A不发生记为,那么.根据相互独立事件的概率乘法分式:于是得到随机变量的概率分布列.123kPq qp 我们称服从几何分布,并记,其中
9、5. 超几何分布:一批产品共有N件,其中有M(MN)件次品,今抽取件,则其中的次品数是一离散型随机变量,分布列为.分子是从M件次品中取k件,从N-M件正品中取n-k件的取法数,如果规定时,则k的范围可以写为k=0,1,n.超几何分布的另一种形式:一批产品由 a件次品、b件正品组成,今抽取n件(1na+b),则次品数的分布列为.超几何分布与二项分布的关系.设一批产品由a件次品、b件正品组成,不放回抽取n件时,其中次品数服从超几何分布.若放回式抽取,则其中次品数的分布列可如下求得:把个产品编号,则抽取n次共有个可能结果,等可能:含个结果,故,即.我们先为k个次品选定位置,共种选法;然后每个次品位置
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 知识点 总结 概率 统计
限制150内