高中数学解析几何专题(精编版)(共18页).doc
《高中数学解析几何专题(精编版)(共18页).doc》由会员分享,可在线阅读,更多相关《高中数学解析几何专题(精编版)(共18页).doc(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上高中解析几何专题(精编版)1. (天津文)设椭圆的左、右焦点分别为F1,F2。点满足 ()求椭圆的离心率; ()设直线PF2与椭圆相交于A,B两点,若直线PF2与圆相交于M,N两点,且,求椭圆的方程。【解析】本小题主要考查椭圆的标准方程和几何性质、直线的方程、两点间的距离公式、点到直线的距离公式、直线与圆的位置关系等基础知识,考查用代数方法研究圆锥曲线的性质及数形结合的数学思想,考查解决问题能力与运算能力,满分13分。 ()解:设,因为,所以,整理得(舍)或 ()解:由()知,可得椭圆方程为,直线FF2的方程为A,B两点的坐标满足方程组消去并整理,得。解得,得方程组的
2、解不妨设,所以于是圆心到直线PF2的距离因为,所以整理得,得(舍),或所以椭圆方程为2. 已知椭圆的离心率为,右焦点为(,0),斜率为I的直线与椭圆G交与A、B两点,以AB为底边作等腰三角形,顶点为P(-3,2).(I)求椭圆G的方程;(II)求的面积.【解析】解:()由已知得解得又所以椭圆G的方程为()设直线l的方程为由得设A、B的坐标分别为AB中点为E,则因为AB是等腰PAB的底边,所以PEAB.所以PE的斜率解得m=2。此时方程为解得所以所以|AB|=.此时,点P(3,2)到直线AB:的距离所以PAB的面积S=3. (全国大纲文)已知O为坐标原点,F为椭圆在y轴正半轴上的焦点,过F且斜率
3、为的直线与C交与A、B两点,点P满足()证明:点P在C上; (II)设点P关于O的对称点为Q,证明:A、P、B、Q四点在同一圆上。【解析】22解:(I)F(0,1),的方程为,代入并化简得2分设则由题意得所以点P的坐标为经验证,点P的坐标为满足方程故点P在椭圆C上。 (II)由和题设知, PQ的垂直一部分线的方程为设AB的中点为M,则,AB的垂直平分线为的方程为由、得的交点为故|NP|=|NA|。又|NP|=|NQ|,|NA|=|NB|,所以|NA|=|NP|=|NB|=|MQ|,由此知A、P、B、Q四点在以N为圆心,NA为半径的圆上。4. (全国新文)在平面直角坐标系xOy中,曲线与坐标轴的
4、交点都在圆C上(I)求圆C的方程;(II)若圆C与直线交于A,B两点,且求a的值【解析】解:()曲线与y轴的交点为(0,1),与x轴的交点为(故可设C的圆心为(3,t),则有解得t=1.则圆C的半径为所以圆C的方程为()设A(),B(),其坐标满足方程组:消去y,得到方程由已知可得,判别式因此,从而由于OAOB,可得又所以由,得,满足故5. (辽宁文)如图,已知椭圆C1的中心在原点O,长轴左、右端点M,N在x轴上,椭圆C2的短轴为MN,且C1,C2的离心率都为e,直线lMN,l与C1交于两点,与C2交于两点,这四点按纵坐标从大到小依次为A,B,C,D(I)设,求与的比值;(II)当e变化时,是
5、否存在直线l,使得BOAN,并说明理由【解析】解:(I)因为C1,C2的离心率相同,故依题意可设设直线,分别与C1,C2的方程联立,求得 4分当表示A,B的纵坐标,可知 6分 (II)t=0时的l不符合题意.时,BO/AN当且仅当BO的斜率kBO与AN的斜率kAN相等,即解得因为所以当时,不存在直线l,使得BO/AN;当时,存在直线l使得BO/AN. 12分6. (江西文)已知过抛物线的焦点,斜率为的直线交抛物线于和两点,且,(1)求该抛物线的方程;(2)为坐标原点,为抛物线上一点,若,求的值【解析】19(本小题满分12分) (1)直线AB的方程是,与联立,从而有所以:由抛物线定义得:所以p=
6、4,从而抛物线方程是 (2)由可简化为从而设又即解得7. (山东文)22(本小题满分14分)在平面直角坐标系中,已知椭圆如图所示,斜率为且不过原点的直线交椭圆于,两点,线段的中点为,射线交椭圆于点,交直线于点()求的最小值;()若,(i)求证:直线过定点;(ii)试问点,能否关于轴对称?若能,求出此时的外接圆方程;若不能,请说明理由【解析】22(I)解:设直线,由题意,由方程组得,由题意,所以设,由韦达定理得所以由于E为线段AB的中点,因此此时所以OE所在直线方程为又由题设知D(-3,m),令x=-3,得,即mk=1,所以当且仅当m=k=1时上式等号成立,此时 由得因此 当时,取最小值2。 (
7、II)(i)由(I)知OD所在直线的方程为将其代入椭圆C的方程,并由解得,又,由距离公式及得由因此,直线的方程为所以,直线(ii)由(i)得若B,G关于x轴对称,则代入即,解得(舍去)或所以k=1,此时关于x轴对称。又由(I)得所以A(0,1)。由于的外接圆的圆心在x轴上,可设的外接圆的圆心为(d,0),因此故的外接圆的半径为,所以的外接圆方程为8. (陕西文)17(本小题满分12分)设椭圆C: 过点(0,4),离心率为()求C的方程;()求过点(3,0)且斜率为的直线被C所截线段的中点坐标。【解析】17解()将(0,4)代入C的方程得 b=4又 得即, a=5C的方程为()过点且斜率为的直线
8、方程为,设直线与的交点为,将直线方程代入的方程,得,即,解得, AB的中点坐标,即中点为。注:用韦达定理正确求得结果,同样给分。9. (上海文)22(16分)已知椭圆(常数),点是上的动点,是右顶点,定点的坐标为。(1)若与重合,求的焦点坐标;(2)若,求的最大值与最小值;(3)若的最小值为,求的取值范围。【解析】22解: ,椭圆方程为, 左右焦点坐标为。 ,椭圆方程为,设,则 时; 时。 设动点,则 当时,取最小值,且, 且解得。10. (四川文)21(本小题共l2分)过点C(0,1)的椭圆的离心率为,椭圆与x轴交于两点、,过点C的直线l与椭圆交于另一点D,并与x轴交于点P,直线AC与直线B
9、D交于点Q(I)当直线l过椭圆右焦点时,求线段CD的长;()当点P异于点B时,求证:为定值本小题主要考查直线、椭圆的标准方程及基本性质等基本知识,考查平面解析几何的思想方法及推理运算能力解:()由已知得,解得,所以椭圆方程为椭圆的右焦点为,此时直线的方程为 ,代入椭圆方程得,解得,代入直线的方程得 ,所以,故()当直线与轴垂直时与题意不符设直线的方程为代入椭圆方程得解得,代入直线的方程得,所以D点的坐标为又直线AC的方程为,又直线BD的方程为,联立得因此,又所以故为定值11. (浙江文)(22)(本小题满分15分)如图,设P是抛物线:上的动点。过点做圆的两条切线,交直线:于两点。 ()求的圆心
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 解析几何 专题 精编 18
限制150内