数列分组求和法(共6页).doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《数列分组求和法(共6页).doc》由会员分享,可在线阅读,更多相关《数列分组求和法(共6页).doc(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上分组求和法典题导入例1(2011山东高考)等比数列an中,a1,a2,a3分别是下表第一、二、三行中的某一个数,且a1,a2,a3中的任何两个数不在下表的同一列.第一列第二列第三列第一行3210第二行6414第三行9818(1)求数列an的通项公式;(2)若数列bn满足:bnan(1)nln an,求数列bn的前2n项和S2n.自主解答(1)当a13时,不合题意;当a12时,当且仅当a26,a318时,符合题意;当a110时,不合题意因此a12,a26,a318.所以公比q3,故an23n1.(2)因为bnan(1)nln an23n1(1)nln(23n1)23n1
2、(1)n(ln 2ln 3)(1)nnln 3,所以S2nb1b2b2n2(1332n1)111(1)2n(ln 2ln 3)123(1)2n2nln 32nln 332nnln 31.由题悟法分组转化法求和的常见类型(1)若anbncn,且bn,cn为等差或等比数列,可采用分组求和法求an的前n项和(2)通项公式为an的数列,其中数列bn,cn是等比数列或等差数列,可采用分组求和法求和以题试法1(2013威海模拟)已知数列xn的首项x13,通项xn2npnq(nN*,p,q为常数),且x1,x4,x5成等差数列求:(1)p,q的值;(2)数列xn前n项和Sn的公式解:(1)由x13,得2pq
3、3,又因为x424p4q,x525p5q,且x1x52x4,得325p5q25p8q,解得p1,q1.(2) 由(1),知xn2nn,所以Sn(2222n)(12n)2n12.2.数列1,3,5,7,的前n项和Sn为()An21 Bn22Cn21 Dn22解析由题意知已知数列的通项为an2n1,则Snn21.答案C3.已知等差数列an的前n项和为Sn,且a35,S15225.(1)求数列an的通项公式;(2)设bn2an2n,求数列bn的前n项和Tn.解析:(1)设等差数列an的首项为a1,公差为d,由题意,得解得an2n1.(2)bn2an2n4n2n,Tnb1b2bn(4424n)2(12
4、n)n2n4nn2n.4.设an是公比为正数的等比数列,a12,a3a24.(1)求an的通项公式;(2)设bn是首项为1,公差为2的等差数列,求数列anbn的前n项和Sn.解析(1)设q为等比数列an的公比,则由a12,a3a24得2q22q4,即q2q20,解得q2或q1(舍去),因此q2.所以an的通项为an22n12n(nN*)(2) Snn122n1n22.5.求和Sn1.解和式中第k项为ak12.Sn22(111()22n2.6.数列an的前n项和为Sn,a11,a22,an2an1(1)n (nN*),则S100_.答案2 600解析由an2an1(1)n知a2k2a2k2,a2
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数列 分组 求和
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内