浙江大学830生物化学2008年试题详解及命题点评(共6页).doc
《浙江大学830生物化学2008年试题详解及命题点评(共6页).doc》由会员分享,可在线阅读,更多相关《浙江大学830生物化学2008年试题详解及命题点评(共6页).doc(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上浙江大学830生物化学2008年试题详解及命题点评1 什么是膜蛋白?举例说明膜蛋白的主要特征和生物学功能(10)细胞中大约有20%-25%的蛋白质与膜结构联系在一起,称为生物膜,是生物膜功能的主要承担者。根据蛋白分离的难易及在膜中分布的位置,膜蛋白基本可分为两大类:外在膜蛋白和内在膜蛋白。外周膜蛋白分布于膜的脂双层的表面,通过静电力或非共价键与其他膜蛋白相互作用连接在膜上,如血影蛋白,是支撑红细胞外形的膜骨架的主要成分。其特点是易于分离,通过改变离子强度或加入加入金属螯合剂即可提取,这类蛋白质都溶于水。膜内在蛋白主要靠输水力与膜脂相结合,有的部分镶嵌在脂双层中,有的横
2、跨全膜。例如细菌视紫红质,它能将光能装化为化学能。这类蛋白质不易分离,不溶于水。 膜蛋白与生物膜的多种生物功能紧密相关,如物质运输时,红细胞膜上的带3蛋白的阴离子运输功能,如信号传导过程中,接受信号分子的膜受体蛋白,如G蛋白,谷氨酸受体等。【恩波翔高点评】重点,理解基本概念,并能联系不同知识点,熟悉各种膜蛋白的功能。2 如何理解在酶催化作用的高效性和专一性理论中论述的“来自酶与底物相互作用的结合赋予了催化反应的高效性和特异性”,并举例说明。(10)酶对催化的反应和反应物有严格的选择性,一种酶只作用于一类化合物或一定的化学键,以促进一定的化学变化,并生成一定的产物,这种现象称为酶的特异性或专一性
3、有的底物特异性几乎严格地只限于一种类型底物(脲酶)EC3515等,也有的不太严格,能作用于多数同类化合物(磷酸化酶)EC 3131和3132等。在后一情况下,因化合物不同反应速度也有所不同。对光学异构体来说,也只能作用其中的一种,多数情况下,反应的类型可因酶而定。当酶与底物分子接近时,酶蛋白受底物分子诱导,其构象发生有利于底物结合的变化,酶与底物在此基础上互补契合进行反应。使底物分子接近它的过渡态,降低了反应活化能,使反应易于发生,具有高效性,且能特异的与结构上更易互补,能形成酶-底物复合物的一类底物特异的反应。特异性是酶的显著特征之一,它可能是由于酶与底物相结合的部位构造上极为适合所致。因为
4、酶的底物特异性非常显著,致使生物体内能建立起严密的代谢反应系列,而形成代谢网。【恩波翔高点评】酶是常考考点,其分类,作用机理,诱导契合学说,催化效率影响因素等要完全掌握。3 什么是G蛋白?描述生物通过G藕联蛋白受体进行型号转导的机理,并举例说明。(10)G蛋白,即GTP结合蛋白(GTP binding protein),参与细胞的多种生命活动,如细胞通讯、核糖体与内质网的结合、小泡运输、微管组装、蛋白质合成等。G蛋白偶联系统中的G蛋白是由三个不同亚基组成的异源三体,三个亚基分别是、, 总相对分子质量在100kDa左右。G蛋白有多种调节功能, 包括Gs和Gi对腺苷酸环化酶的激活和抑制、对cGMP
5、磷酸二酯酶的活性调节、对磷酯酶C的调节、对细胞内Ca2+浓度的调节等, 此外还参与门控离子通道的调节。被cAMP激活的PKA,大多数在胞质溶胶中激活一些细胞质靶蛋白,也有少数被激活的PKA可以转移到细胞核中磷酸化某些重要的核蛋白,其中多数是被称为CREB(cAMP response element binding,cAMP效应元件结合因子)的转录因子。在G蛋白偶联系统中,G蛋白的作用主要是将信号从受体传递给效应物,它包括了三个主要的激发过程:G蛋白被受体激活;G蛋白将信号向效应物转移;应答的终结举例:PKC系统在这一信号转导途径中,膜受体与其相应的第一信使分子结合后,激活膜上的Gq蛋白(一种G
6、蛋白),然后由Gq蛋白激活磷酸酯酶C (phospholipase C, PLC), 将膜上的脂酰肌醇4,5-二磷酸(phosphatidylinositol biphosphate, PIP2)分解为两个细胞内的第二信使: DAG和IP3,最后通过激活蛋白激酶C(protein kinase C,PKC),引起级联反应,进行细胞的应答。该通路也称IP3、DAG、Ca2+信号通路。【恩波翔高点评】03-07未出现信号传导考点,但在02年以前的试卷中曾出现过。作为生物学的一个重要知识点,需要做认真的理解。4 脂肪酸具有的哪些特征特别适合能量储存?分析阐明胖熊如何利用脂肪来冬眠,骆驼如何利用驼峰储
7、存的脂肪作为岁的来源。(10)绝大多数的脂肪酸含有偶数个碳原子,形成长而不分支的链(也有分支的或含环的脂肪酸)。与其他生物大分子比较,脂肪酸具有一个很长的碳链,其长链被氧化最终产生ATP形式的能量。因此这样的长链结构十分有利于能量储存。如一分子软脂酸可生成106个ATP。不饱和脂肪酸有顺式和反式两种异物体。但生物体内大多数是顺式结构。不饱和脂肪酸中,反式双键会造成脂肪酸链弯曲,分子间没有饱和脂肪酸链那样结合紧密。因此,不饱和脂肪酸的熔点低。胖熊的皮下脂肪特别厚,在脂肪酶的作用下,脂肪水解成甘油和脂肪酸。甘油经磷酸化和脱氢反应,转变成磷酸二羟丙酮,纳入糖代谢途径。脂肪酸与ATP和CoA在脂酰Co
8、A合成酶的作用下,生成脂酰CoA。脂酰CoA在线粒体内膜上肉毒碱:脂酰CoA转移酶系统的帮助下进入线粒体衬质,经-氧化降解成乙酰CoA,在进入三羧酸循环彻底氧化。-氧化过程包括脱氢、水合、再脱氢和硫解四个步骤,每次-氧化循环生成FADH2、NADH、乙酰CoA和比原先少两个碳原子的脂酰CoA。此外,某些组织细胞中还存在-氧化生成羟脂肪酸或CO2和少一个碳原子的脂肪酸;经-氧化生成相应的二羧酸。【恩波翔高点评】04-07年未出现,但三大代谢中脂肪酸代谢的考察重要性仅次于糖代谢,要认真掌握。5 什么是糖酵解和糖异生?由于糖酵解和糖异生都是不可逆的过程,因此二个途径可以同时进行。如果两个途径同时以相
9、同的速率进行,会导致什么结果?细胞是通过什么机制对这两个过程进行调控的?(10)糖酵解途径是指细胞在细胞质中分解葡萄糖生成丙酮酸的过程。糖异生:由简单的非糖前体(乳酸、甘油、生糖氨基酸等)转变为糖(葡萄糖或糖原)的过程。所以糖异生是与糖酵解相反的过程。同时进行会导致“无效循环”。糖酵解途径中有催化三个不可逆反应的酶:己糖激酶、6磷酸果糖激酶、丙酮酸激酶糖酵解能产生丙酮酸和少量的ATP,而丙酮酸则是三羧酸循环的底物乙酰辅酶A的前体,在三羧酸循环中,底物被充分氧化,释放的电子,经电子传递链后产生大量的ATP。在糖酵解过程中,磷酸果糖激酶是其的关键酶(因为其催化的反应是不可逆的,且催化速度是最慢的)
10、。该酶会受高浓度的ATP的抑制。如体内的ATP含量过高,既抑制了磷酸果糖激酶的活性,造成丙酮酸产量的下降,从而降低ATP的产生,实现调控能力。【恩波翔高点评】糖酵解、柠檬酸循环的过程、限速酶、调控机理是重点,已重复考察多次。6 人消化了大量的蔗糖之后,多余的葡萄糖和果糖是如何转化成脂肪酸的?(10)糖分解代谢产生的磷酸二羟丙酮经脱氢酶催化还原生成3-磷酸甘油是最主要的来源,合成脂肪酸的酶系主要在胞浆,而糖代谢提供的乙酰CoA原料又在线粒体生成,所以乙酰CoA需通过转运。合成脂肪酸的过程不同于-氧化的逆过程,是由7种酶蛋白和酰基载体蛋白(ACP)组成的多酶复合体完成,合成的产物是软脂酸。碳链延长
11、是在线粒体和内质网中的2个不同的酶系催化下进行的。脂肪酸合成酶系催化进行缩合、还原、脱水、还原反应。(1)酮酰基-ACP合成酶接受乙酰-ACP的乙酰基,释放HS-ACP,并催化乙酰基转移到丙二酸单酰-ACP上生成乙酰乙酰-ACP。(2)乙酰乙酰-ACP中的-酮基转换为醇,生成-羟丁酰-ACP。反应由酮酰基-ACP还原酶催化,NADPH为酶的辅酶。(3)-羟丁酰-ACP经脱水酶催化生成带双键的反式丁烯酰-ACP。(4)反式丁烯酰-ACP还原为四碳的丁酰-ACP。反应是由烯脂酰-ACP还原酶催化, NADPH为酶的辅酶。如此每循环一次,有一个新的丙二酸单酰CoA参与合成(贡献二碳单位),7次循环,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 浙江大学 830 生物化学 2008 试题 详解 命题 点评
限制150内