正弦定理和余弦定理(教师版)(共14页).doc
《正弦定理和余弦定理(教师版)(共14页).doc》由会员分享,可在线阅读,更多相关《正弦定理和余弦定理(教师版)(共14页).doc(14页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上正弦定理和余弦定理1 正弦定理:2R,其中R是三角形外接圆的半径由正弦定理可以变形:(1)abcsin_Asin_Bsin_C;(2)a2Rsin_A,b2Rsin_B,c2Rsin_C;(3)sin A,sin B,sin C等形式,解决不同的三角形问题2 余弦定理:a2b2c22bccos_A,b2a2c22accos_B,c2a2b22abcos_C余弦定理可以变形:cos A,cos B,cos C.3 SABCabsin Cbcsin Aacsin B(abc)r(r是三角形内切圆的半径),并可由此计算R、r.4 在ABC中,已知a、b和A时,解的情况如下:
2、A为锐角A为钝角或直角图形关系式absin Absin Aab解的个数一解两解一解一解难点正本疑点清源1在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在ABC中,ABabsin Asin B;tanA+tanB+tanC=tanAtanBtanC;在锐角三角形中,cosAsinB,cosAsinC2 根据所给条件确定三角形的形状,主要有两种途径:(1)化边为角;(2)化角为边,并常用正弦(余弦)定理实施边、角转换1 在ABC中,若A60,a,则_.2 (2012福建)已知ABC的三边长成公比为的等比数列,则其最大角的余弦值为_3 (2012重庆)设ABC的内角
3、A,B,C的对边分别为a,b,c,且cos A,cos B,b3,则c_.4 (2011课标全国)在ABC中,B60,AC,则AB2BC的最大值为_5 已知圆的半径为4,a、b、c为该圆的内接三角形的三边,若abc16,则三角形的面积为()A2 B8 C. D.题型一利用正弦定理解三角形例1在ABC中,a,b,B45.求角A、C和边c. 已知a,b,c分别是ABC的三个内角A,B,C所对的边,若a1,b,AC2B,则角A的大小为_题型二利用余弦定理求解三角形例2在ABC中,a、b、c分别是角A、B、C的对边,且.(1)求角B的大小;(2)若b,ac4,求ABC的面积 已知A,B,C为ABC的三
4、个内角,其所对的边分别为a,b,c,且2cos2cos A0.(1)求角A的值;(2)若a2,bc4,求ABC的面积题型三正弦定理、余弦定理的综合应用例3(2012课标全国)已知a,b,c分别为ABC三个内角A,B,C的对边,acos Casin Cbc0.(1)求A;(2)若a2,ABC的面积为,求b,c.1.在ABC中,内角A,B,C所对的边长分别是a,b,c.(1)若c2,C,且ABC的面积为,求a,b的值;(2)若sin Csin(BA)sin 2A,试判断ABC的形状解(1)c2,C,由余弦定理c2a2b22abcos C得a2b2ab4.又ABC的面积为,absin C,ab4.联
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 正弦 定理 余弦 教师版 14
限制150内