第三章-行波法(共14页).doc
《第三章-行波法(共14页).doc》由会员分享,可在线阅读,更多相关《第三章-行波法(共14页).doc(14页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上第三章 行波法3.1 达朗贝尔法(行波法)考虑无界弦的自由振动问题,有定解问题如下: 对于上面的标准形方程,它有两族特征曲线,作变换,由上面的方程变为:求上面偏微分方程的解先对积分一次得再对积分一次得:其中是具有任意连续可微函数,将原自变量代回得原方程的通解为下面通过初始条件确定上面的任意函数 , (1) (2)对(2)从到x积分得: (3)(1)+(3)得 该公式叫达朗贝尔公式例:确定初值问题:解:略。达朗贝尔方程的物理定义:先讨论 (即振动只有初始位移) 先看项:当时若观察者位于处,此时在x轴上,若观察者以速度a沿轴正方向运动,则在t时刻观察者位于处,此时:由于t
2、是任意的,这说明观察者在运动过程中随时可以看到相同的波形,可见,波形和观察者一样,以速度a沿x轴正方向传播。 表示以速度a正向传播的波,叫正行波。同样,表示以速度a负向传播的波,叫逆行波。若,即振动没有初始位移,这时令 则 由此可见第一项也是逆行波(反行波),第二项也是正行波。正、反行波的叠加(相减)给出弦的位移。综上所述:达朗贝尔解表示正行波和反行波的叠加。3.2 反射波讨论半元界弦的自由振动,且在无外力作用的情况下,其定解问题为:(1)的通解为:将初始条件(2),(3)代入上式得:得 (5) (6)再将(4)代入得:讨论:当即时,则(5),(6)变为代入通解有:若即,则仍可由(5)得到,但
3、(6)不能用。但由(7)令,则有 则 代入得: 综上半元界弦的自由振动解为:解的物理意义:(1)若时,其解为达朗贝尔解,这说明端点的影响未传到。(2)若时,此时解和达郎贝尔解不相同,这说明端点的影响已传到。为说明问题,设初速度为零则上式中第一项:从轴负向向端点传播的反行波;上式中第二项:若观察者在时位于处,这时他所看到的波形为若观察者以速度沿轴正向行走,于是在时刻观察看者行至到处,这时他们所看到的波形为:这说明第二项是由端点传来的以速度沿轴正向传播的正行波筒称为反射波。反射波的另一种求解办法:()若一端固定:此时相应的定解问题为:由于上面的问题已不是Cauchy问题,因此要用达朗贝尔公式必须将
4、和延拓到整个数轴上,变为。这时: 因此,要使上式成立,只需为奇数即可。 ()若端点自由,则边界条件变为:,则:虽然只要取为奇函数,为偶函数即可。此时:3.3 纯强迫振动以上讨论的仅限于自由振动,其方程均为齐次的。下面讨论无界弦或杆的纯强迫振动,即 这时方程是非齐次的,若能设法将非齐项清去,便可利用达朗贝尔法求解。为此引入冲量原理。1冲量原理方程(1)中的是单位质量的弦上所受的外力。这是一从时刻一直延续到时刻t的持续作用力。根据叠加原理,这一持续力所引起的振动,可视为一条到前后相继的瞬时力所引导起的振动的叠加,即由于力对系统的作用对于时间积累是给系统一定的冲量。考虑在短时间间隔内对系统的作用。则
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第三 行波 14
限制150内