鸡兔同笼问题题型归类及练习答案(共5页).doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《鸡兔同笼问题题型归类及练习答案(共5页).doc》由会员分享,可在线阅读,更多相关《鸡兔同笼问题题型归类及练习答案(共5页).doc(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上鸡兔同笼问题一意义:已知“鸡兔”的总头数和总腿数。求“鸡”和“兔”各多少只。解题关键:采用假设法,假设全是一种动物(如全是鸡或全是兔),然后根 据腿的差数可以推断出一种动物的头数。解题规律:假设全是鸡,兔子头数=(总腿数鸡腿数)2; 即兔子头数=(总腿数2总头数)2。 假设全是兔子,鸡的只数=(兔子腿数总腿数)2, 即鸡的只数=(4总头数总腿数)2二常见题型:1、已知总头数和鸡兔脚数的差数,求鸡兔各多少只(1)已知总头数和鸡兔脚数的差数,当鸡的总脚数比兔的总脚数多时, (每只鸡脚数总头数-鸡兔脚数之差)(每只鸡的脚数+每只兔的脚数)=兔数; 总头数-兔数=鸡数 或(每
2、只兔脚数总头数+鸡兔脚数之差)(每只鸡的脚数+每只免的脚数)=鸡数; 总头数-鸡数=兔数。(2)已知总数与鸡兔脚数的差数,当兔的总脚数比鸡的总脚数多时。 (每只鸡的脚数总头数+鸡兔脚数之差)(每只鸡的脚数+每只兔的脚数)=兔数; 总头数-兔数=鸡数。 或(每只兔的脚数总头数-鸡兔脚数之差)(每只鸡的脚数+每只兔的脚数)=鸡数; 2、 鸡兔互换问题(已知总脚数及鸡兔互换后总脚数,求鸡兔各多少的问题),(两次总脚数之和)(每只鸡兔脚数和)+(两次总脚数之差)(每只鸡兔脚数之差)2=鸡数;(两次总脚数之和)(每只鸡兔脚数之和)-(两次总脚数之差)(每只鸡兔脚数之差)2=兔数。3、得失问题(鸡兔问题的
3、推广题)的解法,可以用下面的公式: (1只合格品得分数产品总数-实得总分数)(每只合格品得分数+每只不合格品扣分数)=不合格品数。 或者是总产品数-(每只不合格品扣分数总产品数+实得总分数)(每只合格品得分数+每只不合格品扣分数)=不合格品数。例题例1. 有鸡兔共30只,兔脚比鸡脚多60只,问鸡兔各多少只?解:兔数:(230+60)(2+4)=20(只); 鸡数:30-20=10(只)解析:首先假设都是鸡,那么有60只脚,然后再加上鸡兔脚数之差,那么剩下的和兔数相同的鸡和兔,也就是相当也是一种六条腿的小怪物,所以再除以6,就自然得出兔子的数了。例2. 小朋友们去划船,大船可以坐10人,小船坐6
4、人,小朋友们共租了15只船,已知乘大船的人比乘小船的人多22人,问大船几只,小船几只?解:大船:(615+22)(6+10)=7(只); 小船:15-7=8(只)或者 小船:(1015-22)(6+10)=8(只) 大船:15-8=7(只)例3. 有一些鸡和兔,共有脚44只,若将鸡数与兔数互换,则共有脚52只。鸡兔各是多少只? 解:鸡数:(52+44)(4+2)+(52-44)(4-2)2=202=10(只)兔数:(52+44)(4+2)-(52-44)(4-2)2=122=6(只)解析:首先用鸡兔互换的数相加,大家想想,那出来的结果是什么,是不是鸡兔的数都变成了鸡兔的总数,已经是变成了鸡兔总
5、数只的六条腿的小怪物,所以(52+44)(4+2),得出的是鸡兔的和,这时其实就变成了一道普通的鸡兔同笼问题了,但如果我们再看看用鸡兔互换的数相减得到的是什么数,为什么交换了会有差捏,因为兔子4条腿,鸡2条腿,所以每把一只鸡换成一只兔子就会多出两条腿,所以(52-44)(4-2),得出的是鸡兔的差。那么这是不是就变成和差问题了,下面大家就能很容易的解答了。例4. 小朋友们去划船,大船可以坐10人,小船坐6人,能坐130人,如果把大船和小船的只数互换则少坐20人,问大船几只,小船几只?解:小船:(130-20+130)(10+6)+20(10-6)2=202=10(只) 大船:(130-20+1
6、30)(10+6)-20(10-6)2=102=5(只)例5. 有鸡兔共30只,鸡脚比兔脚多30只,问鸡兔各多少只?解:兔数:(230-30)(2+4)=5(只); 鸡数:30-5=25(只)解析:首先假设都是鸡,那么有60只脚,然后再减去鸡兔脚数之差,那么剩下的和兔数相同的鸡和兔,也就是相当也是一种六条腿的小怪物,所以再除以6,就自然得出兔子的数了。例6. 小朋友们去划船,大船可以坐10人,小船坐6人,小朋友们共租了15只船,已知乘小船的人比乘大船的人多42人,问大船几只,小船几只?解:大船:(615-42)(6+10)=3(只); 小船:15-3=12(只)或者 小船:(1015+42)(
7、6+10)=12(只) 大船:15-12=3(只) 总头数-鸡数=兔数。例7. “灯泡厂生产灯泡的工人,按得分的多少给工资。每生产一个合格品记4分,每生产一个不合格品不仅不记分,还要扣除15分。某工人生产了1000只灯泡,共得3525分,问其中有多少个灯泡不合格?”解一 (41000-3525)(4+15)=47519=25(个)解二 1000-(151000+3525)(4+15)1000-1852519=1000-975=25(个)(答略)(“得失问题”也称“运玻璃器皿问题”,运到完好无损者每只给运费元,破损者不仅不给运费,还需要赔成本元。它的解法显然可套用上述公式。)课堂练习1. 小梅数
8、她家的鸡与兔,数头有16个,数脚有44只。问:小梅家的鸡与兔各有多少只?解:有兔(44-216)(4-2)=6(只),有鸡16-610(只)。答:有6只兔,10只鸡。2. 100个和尚140个馍,大和尚1人分3个馍,小和尚1人分1个馍。问:大、小和尚各有多少人?假设100人全是大和尚,那么共需馍300个,比实际多300140160(个)。现在以小和尚去换大和尚,每换一个总人数不变,而馍就要减少3-12(个),因为160280,故小和尚有80人,大和尚有1008020(人)。3. 彩色文化用品每套19元,普通文化用品每套11元,这两种文化用品共买了16套,用钱280元。问:两种文化用品各买了多少
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 问题 题型 归类 练习 答案
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内