《2017年上海市初中毕业统一学业考试数学试卷(共3页).doc》由会员分享,可在线阅读,更多相关《2017年上海市初中毕业统一学业考试数学试卷(共3页).doc(3页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上2017年上海市初中毕业统一学业考试数学试卷一、选择题:(本大题共6题,每题4分,满分24分)1.下列实数中,无理数是( ).A ; B; C; D.2.下列方程中,没有实数根的是( ).A; B; C;D.3. 如果一次函数(是常数,)的图像经过第一、二、四象限,那么应满足的条件是( ).A,且;B,且;C,且;D,且.4.数据的中位数和众数分别是( ).A和; B和; C和; D和.5.下列图形中,既是轴对称图形又是中心对称图形的是( ).A菱形; B等边三角形; C平行四边形; D等腰梯形.6.已知平行四边形,、是它的两条对角线,那么下列条件中,能判定这个平行四
2、边形为矩形的是( ).A;B;C; D.二、 填空题:(本大题共12题,每题4分,满分48分)7.计算: . 8. 不等式组的解集是 .9.方程的根是 .10.如果反比例函数(是常数,)的图像经过点,那么在这个函数图像所在的每个象限内,的值随的值增大而 .(填“增大”或“减小”)11.某市前年的年均浓度为微克/立方米,去年比前年下降了.如果今年的年均浓度比去年也下降,那么今年的年均浓度将是 微克/立方米.12.不透明的布袋里个黄球、个红球、个白球,它们除颜色外其它都相同,那么从布袋中任意摸出一个球恰好为红球的概率是 .13.已知一个二次函数的图像开口向上,顶点坐标为,那么这个二次函数的解析式可
3、以是 .(只需写一个)14.某企业今年第一季度各月份产值占这个季度总产值的百分比如图1所示,又知二月份产值是万元,那么该企业第一季度月产值的平均数是 万元. 15. 如图2,已知,、相交于点,设,那么向量用向量设表示为 .图 4图 1图 3图 216. 一副三角尺按图3的位置摆放(顶点与重合,边与边叠合,顶点在一条直线上).将三角尺绕着点按顺时针方向旋转后(),如果,那么的值是 .17.如图4,已知,分别以点为圆心画圆,如果点在内,点在外,且与内切,那么的半径的取值范围是 .18.我们规定:一个正边形(为整数,)的最短对角线与最长对角线的比值叫做这个正边形的“特征值”,记为,那么 .三、简答题
4、:(本大题共7题,满分78分)19. (本题满分10分)计算:.20. (本题满分10分)解方程:.21. (本题满分10分,第(1)小题满分4分,第(2)小题满分6分)如图5,一座钢结构桥梁的框架,水平横梁长米,中柱高米,其中是的中点,且. (1) 求的值;(2) 现需要加装支架,其中点在上,且,垂足为点. 求支架的长图 522. (本题满分10分,每小题满分各5分) 甲、乙两家绿化养护公司各自推出了校园绿化养护服务的收费方案. 甲公司方案:每月的养护费用(元)与绿化面积(平方米)是一种函数关系,如图6所示. 乙公司方案:绿化面积不超过平方米时,每月收取费用元;绿化面积超过平方米时,每月在收
5、取费用元的基础上,超过部分每平方米收取元. (1) 求图6所示的关于的函数解析式;(不要求写出定义域)图 6 (2) 如果某学校目前的绿化面积是平方米,试通过计算说明:选择哪家公司的服务,每月的绿化养护费用较少.23. (本题满分10分,第(1)小题满分7分,第(2)小题满分5分)已知:如图7,四边形中,是对角线上一点,且.(1) 求证:四边形是菱形;图 7(2) 如果,且,求证:四边形是正方形.24. (本题满分12分,每小题满分各4分)在平面直角坐标系中(如图8),已知抛物线经过点,对称轴是直线,顶点为.(1) 求这条抛物线的表达式和点的坐标;(2) 点在对称轴上,且位于顶点上方,设它的纵坐标为,联结,用含的代数式表示的余切值;图 8(3) 将该抛物线向上或向下平移,使得新抛物线的顶点在轴上. 原抛物线上一点平移后的对应点为点,如果,求点的坐标.25. (本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5分)如图9,已知的半径长为,是的两条弦,且,的延长线交于点,联结.(1) 求证:;(2) 当是直角三角形时,求两点的距离;(3) 记的面积分别为,如果是和的比例中项,求的长.图 9 备用图 专心-专注-专业
限制150内