任意角的三角函数导学案(共15页).doc
《任意角的三角函数导学案(共15页).doc》由会员分享,可在线阅读,更多相关《任意角的三角函数导学案(共15页).doc(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上课题:3.2.1 任意角的三角函数(第一课时)一 教学目标 1. 掌握任意角的正弦、余弦、正切的定义;2. 理解任意角的三角函数不同的定义方法;3. 已知角终边上一点,会求角的各三角函数值.二 教学重难点:重点: 任意角的正弦、余弦、正切的定义。难点: 任意角的三角函数不同的定义方法;已知角终边上一点,会求角的各三角函数值. 三 复习回顾:复习1:用弧度制写出终边在下列位置的角的集合.(1)坐标轴上; (2)第二、四象限.复习2:锐角的三角函数如何定义?在初中,我们如果要求一个锐角的三角函数值,经常把这个角放到一个直角三角形中求其比值,从而得到锐角三角函数的值。那么,
2、你能用直角坐标系中角的终边上的点的坐标更方便的去求一个锐角的三角函数值吗?我们可以采用以下方法:如图,设锐角的顶点与原点重合,始边与轴的非负半轴重合,那么它的终边在第一象限.在的终边上任取一点,它与原点的距离. 过作轴的垂线,垂足为,则线段的长度为,线段的长度为.可得:; = ,= .四、新课学习:知识点1:三角函数的定义认真阅读教材P11-P12,领会下面的内容:由相似三角形的知识,对于确定的角,这三个比值不会随点P在的终边上的位置的改变而改变,因此我们可以将点P取在使线段OP的长为r=1的特殊位置上,这样就可以得到用直角坐标系内的点的坐标表示的锐角三角函数的值为:_;_;_问题:上述锐角的
3、三角函数值可以用终边上一点的坐标表示. 那么,角的概念推广以后,我们应该如何得到任意角的三角函数呢? 显然,我们只需在角的终边上找到一个点,使这个点到原点的距离为1,然后就可以类似锐角三角函数求值的方法得到该角的三角函数值.注:单位圆:在直角坐标系中,我们称以原点为圆心,以单位长度为半径的圆为单位圆.上述的点P就是的终边与单位圆的交点,这样锐角三角函数就可以用单位圆上的点的坐标表示。那么我们可以用同样的方法得到任意角的三角函数值。如图,设是一个任意角,它的终边与单位圆交于点,那么:(1)y叫做的正弦(sine),记做;(2)x叫做的余弦(cossine),记做;(3)叫做的正切(tangent
4、),记做.即:,.练习:角与单位圆的交点坐标为 ,则sin= ,cos= ,tan= .注:1)当时,的终边在y轴上,终边上任意一点的横坐标都等于0,所以无意义.2)三角函数的定义域:函数定义域确定三角函数的定义域时,要抓住分母不为0这一关键,当角的终边在坐标上时,点P的坐标中必有一个为0.3)由于角的集合与实数集之间可以建立一一对应关系,因而三角函数可以看成是自变量为实数的函数,正弦、余弦、正切都是以角为自变量,以单位圆上的点的坐标或坐标的比值为函数,我们将它们统称为三角函数。探究:如果知道角终边上一点,而这个点不是终边与单位圆的交点,该如何求它的三角函数值呢?根据相似三角形的性质,在直角坐
5、标系中,设是一个任意角,终边上任意一点(除了原点)的坐标为,它与原点的距离为,则:;=; =.注意:一个角的三角函数值只与这个角的终边的位置有关,而与点的选取无关。 为计算方便,我们把半径为1的圆(单位圆)与角的终边的交点选为点的理想位置。典型例题:例:求角的正弦、余弦和正切值变式练习1 求角的正弦、余弦和正切值小结:作角终边求角终边与单位圆的交点利用三角函数定义来求,或在角的终边上找一个容易找到的点,利用,=, =求三角函数值.2、求角的正弦、余弦和正切值例:已知角的终边经过点P(4,3),求sin、cos、的值;练习:已知角的终边经过点P(-4,2),求sin、cos、的值;方法总结:首先
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 任意 三角函数 导学案 15
限制150内