数列的通项公式的求法以及典型习题练习(共4页).doc
《数列的通项公式的求法以及典型习题练习(共4页).doc》由会员分享,可在线阅读,更多相关《数列的通项公式的求法以及典型习题练习(共4页).doc(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上数列解题方法与学习顺序第一累加法1适用于: -这是广义的等差数列 累加法是最基本的二个方法之一。2若,则 两边分别相加得 例1 已知数列满足,求数列的通项公式。例2 已知数列满足,求数列的通项公式。练习1.已知数列的首项为1,且写出数列的通项公式. 答案:练习2.已知数列满足,求此数列的通项公式. 答案:裂项求和 累乘法二、累乘法 1.。 -适用于: -这是广义的等比数列累乘法是最基本的二个方法之二。2若,则两边分别相乘得,例3 已知数列, ,求数列的通项公式。例4 已知数列满足,求数列的通项公式。例5.设是首项为1的正项数列,且(=1,2, 3,),则它的通项公式是
2、=_.三、待定系数法 适用于 基本思路是转化为等差数列或等比数列,而数列的本质是一个函数,其定义域是自然数集的一个函数。1形如,其中)型(1)若c=1时,数列为等差数列;(2)若d=0时,数列为等比数列;(3)若时,数列为线性递推数列,其通项可通过待定系数法构造辅助数列来求.待定系数法:设,得,与题设比较系数得,所以所以有:因此数列构成以为首项,以c为公比的等比数列,所以 即:.规律:将递推关系化为,构造成公比为c的等比数列从而求得通项公式逐项相减法(阶差法):有时我们从递推关系中把n换成n-1有,两式相减有从而化为公比为c的等比数列,进而求得通项公式. ,再利用类型(1)即可求得通项公式.我们看到此方法比较复杂.例6已知数列中,求数列的通项公式。例7已知数列满足,求数列的通项公式。例8 在数列中,求通项.(逐项相减法)例9. 在数列中,,求通项.(待定系数法)例10 已知数列满足,求数列的通项公式。例11 已知数列满足,求数列的通项公式。六、倒数变换法 适用于分式关系的递推公式,分子只有一项例12 已知数列满足,求数列的通项公式。例13 已知数列满足,求数列的通项解:其特征方程为,解得,令,由,得, 练习1已知数列满足,求数列的通项专心-专注-专业
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数列 公式 求法 以及 典型 习题 练习
限制150内