文科圆锥曲线专题练习及答案(共8页).doc
《文科圆锥曲线专题练习及答案(共8页).doc》由会员分享,可在线阅读,更多相关《文科圆锥曲线专题练习及答案(共8页).doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上文科圆锥曲线1.设是椭圆的左、右焦点,为直线上一点,是底角为的等腰三角形,则的离心率为( ) 【答案】C【命题意图】本题主要考查椭圆的性质及数形结合思想,是简单题.【解析】是底角为的等腰三角形,=,=,2.等轴双曲线的中心在原点,焦点在轴上,与抛物线的准线交于两点,;则的实轴长为( ) 【命题意图】本题主要考查抛物线的准线、直线与双曲线的位置关系,是简单题.【解析】由题设知抛物线的准线为:,设等轴双曲线方程为:,将代入等轴双曲线方程解得=,=,=,解得=2,的实轴长为4,故选C.3.已知双曲线:的离心率为2.若抛物线的焦点到双曲线的渐近线的距离为2,则抛物线的方程为
2、(A) (B) (C)(D)考点:圆锥曲线的性质解析:由双曲线离心率为2且双曲线中a,b,c的关系可知,此题应注意C2的焦点在y轴上,即(0,p/2)到直线的距离为2,可知p=8或数形结合,利用直角三角形求解。4.椭圆的中心在原点,焦距为,一条准线为,则该椭圆的方程为(A) (B) (C) (D)【命题意图】本试题主要考查了椭圆的方程以及性质的运用。通过准线方程确定焦点位置,然后借助于焦距和准线求解参数,从而得到椭圆的方程。【解析】因为,由一条准线方程为可得该椭圆的焦点在轴上县,所以。故选答案C5.已知、为双曲线的左、右焦点,点在上,则(A) (B) (C) (D)【命题意图】本试题主要考查了
3、双曲线的定义的运用和性质的运用,以及余弦定理的运用。首先运用定义得到两个焦半径的值,然后结合三角形中的余弦定理求解即可。【解析】解:由题意可知,设,则,故,利用余弦定理可得。6. 如图,中心均为原点O的双曲线与椭圆有公共焦点,M,N是双曲线的两顶点。若M,O,N将椭圆长轴四等分,则双曲线与椭圆的离心率的比值是A.3 B.2 C. D. 【命题意图】本题主要考查了椭圆和双曲线的方程和性质,通过对两者公交点求解离心率的关系.【解析】设椭圆的长轴为2a,双曲线的长轴为,由M,O,N将椭圆长轴四等分,则,即,又因为双曲线与椭圆有公共焦点,设焦距均为c,则双曲线的离心率为,.7.已知抛物线关于轴对称,它
4、的顶点在坐标原点,并且经过点。若点到该抛物线焦点的距离为,则( )A、 B、 C、 D、 解析设抛物线方程为y2=2px(p0),则焦点坐标为(),准线方程为x=,点评本题旨在考查抛物线的定义: |MF|=d,(M为抛物线上任意一点,F为抛物线的焦点,d为点M到准线的距离).8.对于常数、,“”是“方程的曲线是椭圆”的( )A、充分不必要条件 B、必要不充分条件 C、充分必要条件 D、既不充分也不必要条件【答案】B.【解析】方程的曲线表示椭圆,常数常数的取值为所以,由得不到程的曲线表示椭圆,因而不充分;反过来,根据该曲线表示椭圆,能推出,【点评】本题主要考查充分条件和必要条件、充要条件、椭圆的
5、标准方程的理解.根据方程的组成特征,可以知道常数的取值情况.属于中档题.9.椭圆的左、右顶点分别是A,B,左、右焦点分别是F1,F2。若|AF1|,|F1F2|,|F1B|成等比数列,则此椭圆的离心率为A. B. C. D. 【解析】本题着重考查等比中项的性质,以及椭圆的离心率等几何性质,同时考查了函数与方程,转化与化归思想.利用椭圆及等比数列的性质解题.由椭圆的性质可知:,.又已知,成等比数列,故,即,则.故.即椭圆的离心率为.【点评】求双曲线的离心率一般是通过已知条件建立有关的方程,然后化为有关的齐次式方程,进而转化为只含有离心率的方程,从而求解方程即可. 体现考纲中要求掌握椭圆的基本性质
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 文科 圆锥曲线 专题 练习 答案
限制150内