直线与平面平行经典题目(共14页).doc
《直线与平面平行经典题目(共14页).doc》由会员分享,可在线阅读,更多相关《直线与平面平行经典题目(共14页).doc(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上9.2 直线与平面平行知识梳理1.直线与平面的位置关系有且只有三种,即直线与平面平行、直线与平面相交、直线在平面内.2.直线与平面平行的判定:如果平面外的一条直线与平面内的一条直线平行,那么这条直线与这个平面平行.3.直线与平面平行的性质:如果一条直线与一个平面平行,经过这条直线的平面与已知平面相交,那么这条直线与交线平行.点击双基1.设有平面、和直线m、n,则m的一个充分条件是A.且m B.=n且mnC.mn且nD.且m答案:D2.设m、n是两条不同的直线,、是三个不同的平面.给出下列四个命题,其中正确命题的序号是若m,n,则mn 若,m,则m 若m,n,则mn 若
2、,则A.B.C.D.解析:显然正确.中m与n可能相交或异面.考虑长方体的顶点,与可以相交.答案:A3.一条直线若同时平行于两个相交平面,那么这条直线与这两个平面的交线的位置关系是A.异面B.相交C.平行D.不能确定解析:设=l,a,a,过直线a作与、都相交的平面,记=b,=c,则ab且ac,bc.又b,=l,bl.al.答案:C4.(06重庆卷)对于任意的直线l与平同a,在平面a内必有直线m,使m与lA.平行B.相交 C.垂直 D.互为异面直线解析:对于任意的直线与平面,若在平面内,则存在直线m;若不在平面内,且,则平面内任意一条直线都垂直于,若不在平面内,且于不垂直,则它的射影在平面内为一条
3、直线,在平面内必有直线垂直于它的射影,则与垂直,综上所述,选C.5.已知平面和直线,给出条件:;.(i)当满足条件 时,有;(ii)当满足条件 时,有.(填所选条件的序号)典例剖析【例1】 如下图,两个全等的正方形ABCD和ABEF所在平面相交于AB,MAC,NFB且AM=FN,求证:MN平面BCE.证法一:过M作MPBC,NQBE,P、Q为垂足(如上图),连结PQ.MPAB,NQAB,MPNQ.又NQ= BN=CM=MP,MPQN是平行四边形.MNPQ,PQ平面BCE.而MN平面BCE,MN平面BCE.证法二:过M作MGBC,交AB于点G(如下图),连结NG.MGBC,BC平面BCE,MG平
4、面BCE,MG平面BCE.又=,GNAFBE,同样可证明GN平面BCE.又面MGNG=G,平面MNG平面BCE.又MN平面MNG.MN平面BCE.特别提示证明直线和平面的平行通常采用如下两种方法:利用直线和平面平行的判定定理,通过“线线”平行,证得“线面”平行;利用两平面平行的性质定理,通过“面面”平行,证得“线面”平行.【例2】 已知正四棱锥PABCD的底面边长及侧棱长均为13,M、N分别是PA、BD上的点,且PMMA=BNND=58.(1)求证:直线MN平面PBC;(2)求直线MN与平面ABCD所成的角.(1)证明:PABCD是正四棱锥,ABCD是正方形.连结AN并延长交BC于点E,连结P
5、E.ADBC,ENAN=BNND.又BNND=PMMA,ENAN=PMMA. MNPE.又PE在平面PBC内,MN平面PBC.(2)解:由(1)知MNPE,MN与平面ABCD所成的角就是PE与平面ABCD所成的角.设点P在底面ABCD上的射影为O,连结OE,则PEO为PE与平面ABCD所成的角.由正棱锥的性质知PO=.由(1)知,BEAD=BNND=58, BE=.在PEB中,PBE=60,PB=13,BE=,根据余弦定理,得PE=.在RtPOE中,PO=,PE=,sinPEO=.故MN与平面ABCD所成的角为arcsin.【例3】如图, 在直三棱柱ABCA1B1C1中,AC3,BC4,AA1
6、4,点D是AB的中点, (I)求证:ACBC1; (II)求证:AC 1/平面CDB1; (III)求异面直线 AC1与 B1C所成角的余弦值解析:(I)直三棱柱ABCA1B1C1,底面三边长AC=3,BC=4,AB=5, ACBC,且BC1在平面ABC内的射影为BC, ACBC1;(II)设CB1与C1B的交点为E,连结DE, D是AB的中点, E是BC1的中点, DE/AC1, DE平面CDB1,AC1平面CDB1, AC1/平面CDB1;(III) DE/AC1, CED为AC1与B1C所成的角,在CED中, ED=AC 1=,CD=AB=,CE=CB1=2, , 异面直线 AC1与 B
7、1C所成角的余弦值.闯关训练夯实基础1. (07福建理)已知m、n为两条不同的直线,为两个不同的平面,则下列命题中正确的是A. ,n B. ,mnC. m,mnn D. nm,nm解析:A中m、n少相交条件,不正确;B中分别在两个平行平面的两条直线不一定平行,不正确;C中n可以在内,不正确,选D2.(06福建卷)对于平面和共面的直线m、n,下列命题中真命题是A.若m,mn,则n B.若m,n,则mnC.若m,n,则mn D.若m、n与所成的角相等,则nm解:对于平面和共面的直线、真命题是“若则”, 选C.3.(06湖南卷)过平行六面体ABCD-A1B1C1D1任意两条棱的 中点作直线,其中与平
8、面DBB1D1平行的直线共有 ( )A. 4条 B.6条 C.8条 D.12条解:如图,过平行六面体任意两条棱的中点作直线, 其中与平面平行的直线共有12条,选D.4.(06重庆卷)若是平面外一点,则下列命题正确的是A.过只能作一条直线与平面相交 B.过可作无数条直线与平面垂直C.过只能作一条直线与平面平行 D.过可作无数条直线与平面平行解析:过平面外一点有且只有一个平面与已知平面平行,且这个平面内的任一条直线都与已知平面平行。故选D5.如图,在三棱柱ABCABC中,点E、F、H、 K分别为AC、CB、AB、BC的中点,G为ABC的重心. 从K、H、G、B中取一点作为P, 使得该棱柱恰有2条棱
9、与平面PEF平行,则P为 ( C )AKBHCG DB6.已知a、b为不垂直的异面直线,是一个平面,则a、b在上的射影有可能是两条平行直线;两条互相垂直的直线;同一条直线;一条直线及其外一点.在上面结论中,正确结论的编号是_.(写出所有正确结论的编号)解析:A1D与BC1在平面ABCD上的射影互相平行;AB1与BC1在平面ABCD上的射影互相垂直;DD1与BC1在平面ABCD上的射影是一条直线及其外一点.答案:7.已知RtABC的直角顶点C在平面内,斜边AB,AB=2,AC、BC分别和平面成45和30角,则AB到平面的距离为_.解析:分别过A、B向平面引垂线AA、BB,垂足分别为A、B.设AA
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 直线 平面 平行 经典 题目 14
限制150内