函数的奇偶性教案(共7页).doc
《函数的奇偶性教案(共7页).doc》由会员分享,可在线阅读,更多相关《函数的奇偶性教案(共7页).doc(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上1.3.2(1)函数的奇偶性【教学目标】1.理解函数的奇偶性及其几何意义;2.学会运用函数图象理解和研究函数的性质;3.学会判断函数的奇偶性;【教学重难点】 教学重点:函数的奇偶性及其几何意义 教学难点:判断函数的奇偶性的方法与格式【教学过程】 “对称”是大自然的一种美,这种“对称美”在数学中也有大量的反映,让我们看看下列各函数有什么共性? 提出问题 如图所示,观察下列函数的图象,总结各函数之间的共性.结论:这两个函数之间的图象都关于y轴对称. 那么如何利用函数的解析式描述函数的图象关于y轴对称呢?填写表1和表2,你发现这两个函数的解析式具有什么共同特征?x-3-2-
2、10123f(x)=x2 表1x-3-2-10123f(x)=|x|表2结论:这两个函数的解析式都满足:f(-3)=f(3); f(-2)=f(2); f(-1)=f(1).可以发现对于函数定义域内任意的两个相反数,它们对应的函数值相等,也就是说对于函数定义域内任意一个x,都有f(-x)=f(x).定义:1偶函数一般地,对于函数的定义域内的任意一个,都有,那么就叫做偶函数观察函数f(x)=x和f(x)=的图象,类比偶函数的推导过程,给出奇函数的定义和性质?2奇函数一般地,对于函数的定义域的任意一个,都有,那么就叫做奇函数注意:1、如果函数是奇函数或偶函数,我们就说函数具有奇偶性;函数的奇偶性是
3、函数的整体性质;2、根据奇偶性可将函数分为四类:奇函数、偶函数、既是奇函数又是偶函数、既不是奇函数也不是偶函数;3、由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个,则也一定是定义域内的一个自变量(即定义域关于原点对称)如果一个函数的定义域不关于“0”(原点)对称,则该函数既不是奇函数也不是偶函数;4、偶函数的图象关于y轴对称, 反过来,如果一个函数的图象关于y轴对称,那么这个函数为偶函数 且奇函数的图象关于原点对称;反过来,如果一个函数的图象关于原点对称,那么这个函数为奇函数.且f(0)=05、可以利用图象判断函数的奇偶性,这种方法称为图象法,也可以利用奇偶函数
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 函数 奇偶性 教案
限制150内