《华东师大版八年级数学上册同步练习题全套(共108页).doc》由会员分享,可在线阅读,更多相关《华东师大版八年级数学上册同步练习题全套(共108页).doc(108页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上12.1.1 平方根(第一课时)一随堂检测1、若x2 = a ,则 叫 的平方根,如16的平方根是 ,的平方根是 2、表示 的平方根,表示12的 3、196的平方根有 个,它们的和为 4、下列说法是否正确?说明理由 (1)0没有平方根;(2)1的平方根是;(3)64的平方根是8;(4)5是25的平方根;(5)5、求下列各数的平方根 (1)64 (2)0.25 (3) (4) (5) (5)6、 若与是同一个数的平方根,试确定m的值二拓展提高填空若5x+4的平方根为,则x= 若m4没有平方根,则|m5|= 已知的平方根是,3a+b-1的平方根是,则a+2b的平方根是 解
2、答题a的两个平方根是方程3x+2y=2的一组解 (1) 求a的值 (2)的平方根已知+x+y-2=0 求x-y的值12.1.1平方根(第二课时)随堂检测1、的算术平方根是 ;的算术平方根_ _2、一个数的算术平方根是9,则这个数的平方根是 3、若有意义,则x的取值范围是 ,若a0,则 04、下列叙述错误的是( ) A、-4是16的平方根 B、17是的算术平方根 C、的算术平方根是 D、0.4的算术平方根是0.025.已知ABC的三边分别为a、b、c且a、b满足,求c的取值范围(提示:根据非负数的性质求a、b的值,再由三角形三边关系确定c的范围) 拓展提高1、若,则的平方根为( )A、16 B、
3、 C、 D、2、的算术平方根是( )A、4 B、 C、2 D、3、如果一个数的算术平方根等于它的平方根,那么这个数是 4、若+=0,则= 5、若a是的平方根,b是的算术平方根,求+2b的值?12.1.2 立方根随堂检测1、若一个数的立方等于 5,则这个数叫做5的 ,用符号表示为 ,64的立方根是 ,125的立方根是 ; 的立方根是 5.2、如果=216,则= . 当为 时,有意义.3、下列语句正确的是( )A、的立方根是2 B、的立方根是27 C、的立方根是 D、立方根是4、求下列各数的立方根 (1)512 (2)-0.027 (3) (4)1728拓展提高一、选择1、若,则a+b的所有可能值
4、是( )A、0 B、 C、0或 D、0或12或2、若式子有意义,则的取值范围为( )A、 B、 C、 D、以上均不对二、填空3、的立方根的平方根是 若,则(4+x)的立方根为 三、解答题4、若,求的值.12.2实数与数轴随堂检测1、下列各数:,中,无理数有 个,有理数有 个,负数有 个,整数有 个.2、的相反数是 ,|= 的相反数是 ,的绝对值= 3、设对应数轴上的点A,对应数轴上的点B,则A、B间的距离为 4、若实数ab1) -4x2(xy-y2)-3x(xy2-2x2y)单项式与多项式相乘随堂练习题一、选择题1计算(-3x)(2x2-5x-1)的结果是( ) A-6x2-15x2-3x B
5、-6x3+15x2+3x C-6x3+15x2 D-6x3+15x2-12下列各题计算正确的是( ) A(ab-1)(-4ab2)=-4a2b3-4ab2 B(3x2+xy-y2)3x2=9x4+3x3y-y2 C(-3a)(a2-2a+1)=-3a3+6a2 D(-2x)(3x2-4x-2)=-6x3+8x2+4x3如果一个三角形的底边长为2x2y+xy-y2,高为6xy,则这个三角形的面积是( ) A6x3y2+3x2y2-3xy3 B6x3y2+3xy-3xy3 C6x3y2+3x2y2-y2 D6x3y+3x2y24计算x(y-z)-y(z-x)+z(x-y),结果正确的是( ) A2
6、xy-2yz B-2yz Cxy-2yz D2xy-xz二、填空题5方程2x(x-1)=12+x(2x-5)的解是_6计算:-2ab(a2b+3ab2-1)=_7已知a+2b=0,则式子a3+2ab(a+b)+4b3的值是_三、解答题8计算:(x2y-2xy+y2)(-4xy) -ab2(3a2b-abc-1)(3an+2b-2anbn-1+3bn)5anbn+3(n为正整数,n1)-4x2(xy-y2)-3x(xy2-2x2y)9化简求值:-ab(a2b5-ab3-b),其中ab2=-2。四、探究题10请先阅读下列解题过程,再仿做下面的题 已知x2+x-1=0,求x3+2x2+3的值 解:x
7、3+2x2+3=x3+x2-x+x2+x+3 =x(x2+x-1)+x2+x-1+4 =0+0+4=4 如果1+x+x2+x3=0,求x+x2+x3+x4+x5+x6+x7+x8的值3. 多项式与多项式相乘回 忆(m+n)(a+b)=ma+mb+na+nb概 括这个等式实际上给出了多项式乘以多项式的法则:多项式与多项式相乘,先用 ,再把 例4计算:(1) (x2)(x3) (2) (3x1)(2x1)例5计算:(1) (x3y)(x7y); (2) (2x5y)(3x2y)练习1. 计算:(1) (x5)(x7); (2) (x5y)(x7y)(3) (2m3n)(2m3n); (4) (2a
8、3b)(2a3b)2. 小东找来一张挂历纸包数学课本已知课本长a厘米,宽b厘米,厚c厘米,小东想将课本封面与封底的每一边都包进去m厘米问小东应在挂历纸上裁下一块多大面积的长方形?习题13.21. 计算:(1) 5x8x;(2) 11x(12x);(3) 2x(3x);(4) (8xy)(1/2x) 2. 世界上最大的金字塔胡夫金字塔高达146.6米,底边长230.4米,用了约2.3块大石块,每块重约2.5千克请问: 胡夫金字塔总重约多少千克?3. 计算:(1) 3x(2xx4);(2) 5/2xy(xy4/5xy)4. 化简:(1)x(1/2x1)3x(3/2x2);(2)x(x1)2x(x2
9、x3)5. 一块边长为xcm的正方形地砖,被裁掉一块2cm宽的长条问剩下部分的面积是多少?6. 计算:(1) (x5)(x6); (2) (3x4)(3x4); (3) (2x1)(2x3);(4) (9x4y)(9x4y)13.5 因式分解(1)一、基础训练 1若多项式-6ab+18abx+24aby的一个因式是-6ab,那么其余的因式是( ) A-1-3x+4y B1+3x-4y C-1-3x-4y D1-3x-4y 2多项式-6ab2+18a2b2-12a3b2c的公因式是( ) A-6ab2c B-ab2 C-6ab2 D-6a3b2c 3下列用提公因式法分解因式正确的是( ) A12
10、abc-9a2b2=3abc(4-3ab) B3x2y-3xy+6y=3y(x2-x+2y) C-a2+ab-ac=-a(a-b+c) Dx2y+5xy-y=y(x2+5x) 4下列等式从左到右的变形是因式分解的是( ) A-6a3b2=2a2b(-3ab2) B9a2-4b2=(3a+2b)(3a-2b) Cma-mb+c=m(a-b)+c D(a+b)2=a2+2ab+b2 5下列各式从左到右的变形错误的是( ) A(y-x)2=(x-y)2 B-a-b=-(a+b) C(m-n)3=-(n-m)3 D-m+n=-(m+n) 6若多项式x2-5x+m可分解为(x-3)(x-2),则m的值为
11、( ) A-14 B-6 C6 D4 7(1)分解因式:x3-4x=_;(2)因式分解:ax2y+axy2=_ 8因式分解:(1)3x2-6xy+x; (2)-25x+x3;(3)9x2(a-b)+4y2(b-a); (4)(x-2)(x-4)+1二、能力训练 9计算5499+4599+99=_ 10若a与b都是有理数,且满足a2+b2+5=4a-2b,则(a+b)2006=_ 11若x2-x+k是一个多项式的平方,则k的值为( ) A B- C D- 12若m2+2mn+2n2-6n+9=0,求的值13利用整式的乘法容易知道(m+n)(a+b)=ma+mb+na+nb,现在的问题是:如何将多
12、项式ma+mb+na+nb因式分解呢?用你发现的规律将m3-m2n+mn2-n3因式分解14由一个边长为a的小正方形和两个长为a,宽为b的小矩形拼成如图的矩形ABCD,则整个图形可表达出一些有关多项式分解因式的等式,请你写出其中任意三个等式 15说明817-299-913能被15整除参考答案 1D 点拨:-6ab+18abx+24aby=-6ab(1-3x-4y) 2C 点拨:公因式由三部分组成;系数找最大公约数,字母找相同的,字母指数找最低的 3C 点拨:A中c不是公因式,B中括号内应为x2-x+2,D中括号内少项 4B 点拨:分解的式子必须是多项式,而A是单项式;分解的结果是几个整式乘积的
13、形式,C、D不满足 5D 点拨:-m+n=-(m-n) 6C 点拨:因为(x-3)(x-2)=x2-5x+6,所以m=6 7(1)x(x+2)(x-2);(2)axy(x+y) 8(1)3x2-6xy+x=x(3x-6y+1); (2)-25x+x3=x(x2-25)=x(x+5)(x-5); (3)9x2(a-b)+4y2(b-a)=9x2(a-b)-4y2(a-b) =(a-b)(9x2-4y2)=(a-b)(3x+2y)(3x-2y); (4)(x-2)(x-4)+1=x2-6x+8+1=x2-6x+9=(x-3)2 99900 点拨:5499+4599+99=99(54+45+1)=9
14、9100=9900101 点拨:a2+b2+5=4a-2b,a2-4a+4+b2+2b+1=0,即(a-2)2+(b+1)2=0,所以a=2,b=-1,(a+b)2006=(2-1)2006=1 11A 点拨:因为x2-x+=(x-)2,所以k= 12解:m2+2mn+2n2-6n+9=0, (m2+2mn+n2)+(n2-6n+9)=0, (m+n)2+(n-3)2=0, m=-n,n=3, m=-3 =- 13解:m3-m2n+mn2-n3=m2(m-n)+n2(m-n)=(m-n)(m2+n2) 14a2+2ab=a(a+2b),a(a+b)+ab=a(a+2b),a(a+2b)-a(a
15、+b)=ab, a(a+2b)-2ab=a2,a(a+2b)-a2=2ab等 点拨:将某一个矩形面积用不同形式表示出来15解:817-279-913=(34)7-(33)9-(32)13=328-327-326=326(32-3-1)=3265=32535=32515,故817-279-913能被15整除13.5 因式分解(2) 13a4b2与-12a3b5的公因式是_ 2把下列多项式进行因式分解(1)9x2-6xy+3x; (2)-10x2y-5xy2+15xy; (3)a(m-n)-b(n-m) 3因式分解:(1)16-m2; (2)(a+b)2-1; (3)a2-6a+9; (4)x2+
16、2xy+2y2 4下列由左边到右边的变形,属于因式分解的是( ) A(x+2)(x-2)=x2-4 Bx2-2x+1=x(x-2)+1 Ca2-b2=(a+b)(a-b) Dma+mb+na+nb=m(a+b)+n(a+b) 5因式分解: (1)3mx2+6mxy+3my2; (2)x4-18x2y2+81y4; (3)a4-16; (4)4m2-3n(4m-3n)6因式分解:(1)(x+y)2-14(x+y)+49; (2)x(x-y)-y(y-x);(3)4m2-3n(4m-3n)7用另一种方法解案例1中第(2)题 8分解因式:(1)4a2-b2+6a-3b; (2)x2-y2-z2-2y
17、z 9已知:a-b=3,b+c=-5,求代数式ac-bc+a2-ab的值参考答案 13a3b2 2(1)原式=3x(3x-2y+1); (2)原式=-(10x2y+5xy2-15xy)=-5xy(2x+y-3); (3)原式=a(m-n)+b(m-n)=(m-n)(a+b) 点拨:(1)题公因式是3x,注意第3项提出3x后,不要丢掉此项,括号内的多项式中写1;(2)题公因式是-5xy,当多项式第一项是负数时,一般提出“”号使括号内的第一项为正数,在提出“”号时,注意括号内的各项都变号 3(1)16-m2=42-(m)2=(4+m)(4-m); (2)(a+b)2-1=(a+b)+1(a+b)-
18、b=(a+b+1)(a+b-1); (3)a2-6a+9=a2-2a3+32=(a-3)2; (4)x2+2xy+y2=(x2+4xy+4y2)= x2+2x2y+(2y)2=(x+2y)2 点拨:如果多项式完全符合公式形式则直接套用公式,若不是,则要先化成符合公式的形式,再套用公式(1)(2)符合平方差公式的形式,(3)(4)符合完全平方公式的形式 4C 点拨:这是一道概念型试题,其思路是根据因式分解的定义来判断,分解因式的最后结果应是几个整式积的形式,只有C是,故选C 5(1)3mx2+6mxy+3my2=3m(x2+2xy+y2)=3m(x+y)2; (2)x4-18x2y2+81y4=
19、(x2)2-2x29x2+(9y2)2=(x2-9y2)2=x2-(3y)2 2=(x+3y)(x-3y) =(x+3y)2(x-3y)2; (3)a416=(a2)2-42=(a2+4)(a2-4)=(a2+4)(a+2)(a-2); (4)4m2-3n(4m-3n)=4m2-12mn+9n2=(2m)2-22m3n+(3n)2=(2m-3n)2 点拨:因式分解时,要进行到每一个多项式因式都不能分解为止(1)先提公因式3m,然后用完全平方公式分解;(2)把x4作(x2)2,81y4作(9y2)2,然后运用完全平方公式 6(1)(x+y)2-14(x+y)+49=(x+y)2-2(x+y)7+72=(x+y-7)2; (2)x(x-y)-y(y-x)=x(x-y)+y(x-y)=(x-y)(x+y); (3)4m2-3n(4m-3n)=4m2-12mn+9n2=(2m)2-22m3n+(3n)2 =(2m-3n)2 7x(x-y)+y(y-x)=x2-xy+y2-xy=x2-2xy+y2=(x-y)2 8解:(1)原式=(4a2-b2)+(6a-3b)=(2a+b)(2a-b)+3(2a-b)=
限制150内