导数高考真题2及答案(共66页).doc
《导数高考真题2及答案(共66页).doc》由会员分享,可在线阅读,更多相关《导数高考真题2及答案(共66页).doc(69页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上绝密启用前2018年09月03日一中的高中数学组卷试卷副标题考试范围:xxx;考试时间:100分钟;命题人:xxx题号一二三总分得分注意事项:1答题前填写好自己的姓名、班级、考号等信息2请将答案正确填写在答题卡上第卷(选择题)请点击修改第I卷的文字说明 评卷人 得 分 一选择题(共5小题)1设函数f(x)是奇函数f(x)(xR)的导函数,f(1)=0,当x0时,xf(x)f(x)0,则使得f(x)0成立的x的取值范围是()A(,1)(0,1)B(1,0)(1,+)C(,1)(1,0)D(0,1)(1,+)2设f(x)=xsinx,则f(x)()A既是奇函数又是减函数B
2、既是奇函数又是增函数C是有零点的减函数D是没有零点的奇函数3若定义在R上的函数f(x)满足f(0)=1,其导函数f(x)满足f(x)k1,则下列结论中一定错误的是()ABCD4设函数f(x)=ln(1+|x|),则使得f(x)f(2x1)成立的x的取值范围是()A(,)(1,+)B(,1)C()D(,)5设函数f(x)=ex(2x1)ax+a,其中a1,若存在唯一的整数x0使得f(x0)0,则a的取值范围是()A)B)C)D)第卷(非选择题)请点击修改第卷的文字说明 评卷人 得 分 二填空题(共8小题)6函数y=xex在其极值点处的切线方程为 7设曲线y=ex在点(0,1)处的切线与曲线y=(
3、x0)上点P的切线垂直,则P的坐标为 8曲线y=xex在点(0,0)处的切线方程为 9已知曲线y=x+lnx在点(1,1)处的切线与曲线y=ax2+(a+2)x+1相切,则a= 10曲线y=x2与y=x所围成的封闭图形的面积为 11已知函数f(x)=axlnx,x(0,+),其中a为实数,f(x)为f(x)的导函数,若f(1)=3,则a的值为 12如图,点A的坐标为(1,0),点C的坐标为(2,4),函数f(x)=x2,若在矩形ABCD内随机取一点,则此点取自阴影部分的概率等于 13已知函数f(x)=ax3+x+1的图象在点(1,f(1)处的切线过点(2,7),则a= 评卷人 得 分 三解答题
4、(共37小题)14设f(x)=xlnxax2+(2a1)x,aR(1)令g(x)=f(x),求g(x)的单调区间;(2)已知f(x)在x=1处取得极大值,求正实数a的取值范围15设函数f(x)=x3+ax2+bx+c(1)求曲线y=f(x)在点(0,f(0)处的切线方程;(2)设a=b=4,若函数f(x)有三个不同零点,求c的取值范围;(3)求证:a23b0是f(x)有三个不同零点的必要而不充分条件16已知函数f(x)=(x+1)lnxa(x1)(I)当a=4时,求曲线y=f(x)在(1,f(1)处的切线方程;(II)若当x(1,+)时,f(x)0,求a的取值范围17设函数f(x)=ax2al
5、nx,其中aR()讨论f(x)的单调性;()确定a的所有可能取值,使得f(x)e1x在区间(1,+)内恒成立(e=2.718为自然对数的底数)18设函数f(x)=xeax+bx,曲线y=f(x)在点(2,f(2)处的切线方程为y=(e1)x+4,()求a,b的值;()求f(x)的单调区间19设函数f(x)=x3axb,xR,其中a,bR(1)求f(x)的单调区间;(2)若f(x)存在极值点x0,且f(x1)=f(x0),其中x1x0,求证:x1+2x0=0;(3)设a0,函数g(x)=|f(x)|,求证:g(x)在区间1,1上的最大值不小于20设函数f(x)=acos2x+(a1)(cosx+
6、1),其中a0,记|f(x)|的最大值为A()求f(x);()求A;()证明:|f(x)|2A21已知函数f(x)=(x2)ex+a(x1)2有两个零点()求a的取值范围;()设x1,x2是f(x)的两个零点,证明:x1+x2222已知f(x)=a(xlnx)+,aR(I)讨论f(x)的单调性;(II)当a=1时,证明f(x)f(x)+对于任意的x1,2成立23已知函数f(x)=(x2)ex+a(x1)2()讨论f(x)的单调性;()若f(x)有两个零点,求a的取值范围24设函数f(x)=ax2alnx,g(x)=,其中aR,e=2.718为自然对数的底数(1)讨论f(x)的单调性;(2)证明
7、:当x1时,g(x)0;(3)确定a的所有可能取值,使得f(x)g(x)在区间(1,+)内恒成立25设函数f(x)=(x1)3axb,xR,其中a,bR(1)求f(x)的单调区间;(2)若f(x)存在极值点x0,且f(x1)=f(x0),其中x1x0,求证:x1+2x0=3;(3)设a0,函数g(x)=|f(x)|,求证:g(x)在区间0,2上的最大值不小于26()讨论函数f(x)=ex的单调性,并证明当x0时,(x2)ex+x+20;()证明:当a0,1)时,函数g(x)=(x0)有最小值设g(x)的最小值为h(a),求函数h(a)的值域27设函数f(x)=+,当x=1时f(x)取得极值()
8、求a;()求f(x)的单调区间28设函数f(x)=(x+a)lnx,g(x)=已知曲线y=f(x)在点(1,f(1)处的切线与直线2xy=0平行()求a的值;()是否存在自然数k,使得方程f(x)=g(x)在(k,k+1)内存在唯一的根?如果存在,求出k;如果不存在,请说明理由;()设函数m(x)=minf(x),g(x)(minp,q表示p,q中的较小值),求m(x)的最大值29已知函数f(x)=ax2+,其中a为常数(1)根据a的不同取值,判断函数f(x)的奇偶性,并说明理由;(2)若a(1,3),判断函数f(x)在1,2上的单调性,并说明理由30已知函数f(x)=x3+ax2+b(a,b
9、R)(1)试讨论f(x)的单调性;(2)若b=ca(实数c是与a无关的常数),当函数f(x)有三个不同的零点时,a的取值范围恰好是(,3)(1,)(,+),求c的值31设nN*,xn是曲线y=x2n+2+1在点(1,2)处的切线与x轴交点的横坐标()求数列xn的通项公式;()记Tn=x12x32x2n12,证明:Tn32已知函数f(x)=(a0,r0)(1)求f(x)的定义域,并讨论f(x)的单调性;(2)若=400,求f(x)在(0,+)内的极值33设函数f(x)=emx+x2mx(1)证明:f(x)在(,0)单调递减,在(0,+)单调递增;(2)若对于任意x1,x21,1,都有|f(x1)
10、f(x2)|e1,求m的取值范围34设函数f(x)=lnx+a(1x)()讨论:f(x)的单调性;()当f(x)有最大值,且最大值大于2a2时,求a的取值范围35已知函数f(x)=lnx()求函数f(x)的单调增区间;()证明;当x1时,f(x)x1;()确定实数k的所有可能取值,使得存在x01,当x(1,x0)时,恒有f(x)k(x1)36已知函数f(x)=ax3+x2(aR)在x=处取得极值()确定a的值;()若g(x)=f(x)ex,讨论g(x)的单调性37设函数f(x)=e2xalnx()讨论f(x)的导函数f(x)零点的个数;()证明:当a0时,f(x)2a+aln38已知函数f(x
11、)=2(x+a)lnx+x22ax2a2+a,其中a0()设g(x)是f(x)的导函数,讨论g(x)的单调性;()证明:存在a(0,1),使得f(x)0在区间(1,+)内恒成立,且f(x)=0在区间(1,+)内有唯一解39设函数f(x)=(aR)()若f(x)在x=0处取得极值,确定a的值,并求此时曲线y=f(x)在点(1,f(1)处的切线方程;()若f(x)在3,+)上为减函数,求a的取值范围40已知函数f(x)=ln,()求曲线y=f(x)在点(0,f(0)处的切线方程;()求证,当x(0,1)时,f(x);()设实数k使得f(x)对x(0,1)恒成立,求k的最大值41已知函数f(x)=x
12、3+ax+,g(x)=lnx(i)当a为何值时,x轴为曲线y=f(x)的切线;(ii)用minm,n表示m,n中的最小值,设函数h(x)=minf(x),g(x)(x0),讨论h(x)零点的个数42已知函数f(x)=4xx4,xR()求f(x)的单调区间;()设曲线y=f(x)与x轴正半轴的交点为P,曲线在点P处的切线方程为y=g(x),求证:对于任意的实数x,都有f(x)g(x);()若方程f(x)=a(a为实数)有两个实数根x1,x2,且x1x2,求证:x2x1+443设a1,函数f(x)=(1+x2)exa(1)求f(x)的单调区间;(2)证明f(x)在(,+)上仅有一个零点;(3)若曲
13、线y=f(x)在点P处的切线与x轴平行,且在点M(m,n)处的切线与直线OP平行,(O是坐标原点),证明:m144已知函数f(x)=nxxn,xR,其中nN,且n2()讨论f(x)的单调性;()设曲线y=f(x)与x轴正半轴的交点为P,曲线在点P处的切线方程为y=g(x),求证:对于任意的正实数x,都有f(x)g(x);()若关于x的方程f(x)=a(a为实数)有两个正实数根x1,x2,求证:|x2x1|+245设函数f(x)=klnx,k0(1)求f(x)的单调区间和极值;(2)证明:若f(x)存在零点,则f(x)在区间(1,上仅有一个零点46设 a为实数,函数 f(x)=(xa)2+|xa
14、|a(a1)(1)若f(0)1,求a的取值范围;(2)讨论 f(x)的单调性;(3)当a2 时,讨论f(x)+ 在区间 (0,+)内的零点个数47已知函数f(x)=ln(1+x),g(x)=kx,(kR)(1)证明:当x0时,f(x)x;(2)证明:当k1时,存在x00,使得对任意x(0,x0),恒有f(x)g(x);(3)确定k的所有可能取值,使得存在t0,对任意的x(0,t),恒有|f(x)g(x)|x248已知函数f(x)=2xlnx+x22ax+a2,其中a0()设g(x)是f(x)的导函数,讨论g(x)的单调性;()证明:存在a(0,1),使得f(x)0恒成立,且f(x)=0在区间(
15、1,+)内有唯一解49已知a0,函数f(x)=eaxsinx(x0,+)记xn为f(x)的从小到大的第n(nN*)个极值点证明:()数列f(xn)是等比数列;()若a,则对一切nN*,xn|f(xn)|恒成立50设函数f(x)=ln(x+1)+a(x2x),其中aR,()讨论函数f(x)极值点的个数,并说明理由;()若x0,f(x)0成立,求a的取值范围专心-专注-专业2018年09月03日一中的高中数学组卷参考答案与试题解析一选择题(共5小题)1【分析】由已知当x0时总有xf(x)f(x)0成立,可判断函数g(x)=为减函数,由已知f(x)是定义在R上的奇函数,可证明g(x)为(,0)(0,
16、+)上的偶函数,根据函数g(x)在(0,+)上的单调性和奇偶性,模拟g(x)的图象,而不等式f(x)0等价于xg(x)0,数形结合解不等式组即可【解答】解:设g(x)=,则g(x)的导数为:g(x)=,当x0时总有xf(x)f(x)成立,即当x0时,g(x)恒小于0,当x0时,函数g(x)=为减函数,又g(x)=g(x),函数g(x)为定义域上的偶函数又g(1)=0,函数g(x)的图象性质类似如图:数形结合可得,不等式f(x)0xg(x)0或,0x1或x1故选:A【点评】本题主要考查了利用导数判断函数的单调性,并由函数的奇偶性和单调性解不等式,属于综合题2【分析】利用函数的奇偶性的定义判断f(
17、x)为奇函数,再利用导数研究函数的单调性,从而得出结论【解答】解:由于f(x)=xsinx的定义域为R,且满足f(x)=x+sinx=f(x),可得f(x)为奇函数再根据f(x)=1cosx0,可得f(x)为增函数,故选:B【点评】本题主要考查函数的奇偶性的判断方法,利用导数研究函数的单调性,属于基础题3【分析】根据导数的概念得出k1,用x=代入可判断出f(),即可判断答案【解答】解;f(0)=f(x)k1,k1,即k1,当x=时,f()+1k=,即f()1=故f(),所以f(),一定出错,另解:设g(x)=f(x)kx+1,g(0)=0,且g(x)=f(x)k0,g(x)在R上递增,k1,对
18、选项一一判断,可得C错故选:C【点评】本题考查了导数的概念,不等式的化简运算,属于中档题,理解了变量的代换问题4【分析】根据函数的奇偶性和单调性之间的关系,将不等式进行转化即可得到结论【解答】解:函数f(x)=ln(1+|x|)为偶函数,且在x0时,f(x)=ln(1+x),导数为f(x)=+0,即有函数f(x)在0,+)单调递增,f(x)f(2x1)等价为f(|x|)f(|2x1|),即|x|2x1|,平方得3x24x+10,解得:x1,所求x的取值范围是(,1)故选:B【点评】本题主要考查函数奇偶性和单调性的应用,综合考查函数性质的综合应用,运用偶函数的性质是解题的关键5【分析】设g(x)
19、=ex(2x1),y=axa,问题转化为存在唯一的整数x0使得g(x0)在直线y=axa的下方,求导数可得函数的极值,数形结合可得ag(0)=1且g(1)=3e1aa,解关于a的不等式组可得【解答】解:设g(x)=ex(2x1),y=axa,由题意知存在唯一的整数x0使得g(x0)在直线y=axa的下方,g(x)=ex(2x1)+2ex=ex(2x+1),当x时,g(x)0,当x时,g(x)0,当x=时,g(x)取最小值2,当x=0时,g(0)=1,当x=1时,g(1)=e0,直线y=axa恒过定点(1,0)且斜率为a,故ag(0)=1且g(1)=3e1aa,解得a1故选:D【点评】本题考查导
20、数和极值,涉及数形结合和转化的思想,属中档题二填空题(共8小题)6【分析】求出极值点,再结合导数的几何意义即可求出切线的方程【解答】解:依题解:依题意得y=ex+xex,令y=0,可得x=1,y=因此函数y=xex在其极值点处的切线方程为y=故答案为:y=【点评】本小题主要考查直线的斜率、导数的几何意义、利用导数研究曲线上某点切线方程等基础知识,考查运算求解能力属于基础题7【分析】利用y=ex在某点处的切线斜率与另一曲线的切线斜率垂直求得另一曲线的斜率,进而求得切点坐标【解答】解:f(x)=ex,f(0)=e0=1y=ex在(0,1)处的切线与y=(x0)上点P的切线垂直点P处的切线斜率为1又
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 导数 高考 答案 66
限制150内