2022年八级数学平方根练习.pdf
《2022年八级数学平方根练习.pdf》由会员分享,可在线阅读,更多相关《2022年八级数学平方根练习.pdf(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、学习资料收集于网络,仅供参考学习资料第六章实数知识网络:考点一、实数的概念及分类1、实数的分类2、无理数在理解无理数时,要抓住“无限不循环”这一点,归纳起来有四类(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率 ,或化简后含有的数,如3+8 等;(3)有特定结构的数,如0.1010010001等;(4)某些三角函数,如sin60o等(这类在初三会出现)判断一个数是否是无理数,不能只看形式,要看运算结果,如0,16是有理数,而不是无理数。3、有理数与无理数的区别(1)有理数指的是有限小数和无限循环小数,而无理数则是无限不循环小数;(2)所有的有理数都能写成分数的形式(整数可以看
2、成是分母为1 的分数),而无理数则不能写成分数形式。考点二、平方根、算术平方根、立方根1、概念、定义(1)如果一个正数x 的平方等于a,即,那么这个正数x 叫做 a的算术平方根。(2)如果一个数的平方等于a,那么这个数就叫做a的平方根 (或二次方跟) 。如果,那么 x 叫做 a 的平方根。(3)如果一个数的立方等于a,那么这个数就叫做a 的立方根(或a 的三次方根)。如果,那么 x 叫做 a 的立方根。精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 1 页,共 11 页 - - - - - - - - -
3、 - 学习资料收集于网络,仅供参考学习资料2、运算名称(1)求一个正数a 的平方根的运算,叫做开平方。平方与开平方互为逆运算。(2)求一个数的立方根的运算,叫做开立方。开立方和立方互为逆运算。3、运算符号(1)正数 a 的算术平方根,记作“a” 。(2)a(a0)的平方根的符号表达为。(3)一个数 a 的立方根,用表示,其中a是被开方数,3 是根指数。4、运算公式4、开方规律小结(1)若 a0,则a的平方根是a,a的算术平方根a;正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术平方根;0 的平方根和算术平方根都是0;负数没有平方根。实数都有立方根, 一个数的立方根有且只有一个,并且它
4、的符号与被开方数的符号相同。正数的立方根是正数,负数的立方根是负数,0 的立方根是0。(2)若a0,则a没有平方根和算术平方根;若a为任意实数,则a的立方根是。(3)正数的两个平方根互为相反数,两个互为相反数的实数的立方根也互为相反数。考点三、实数的性质有理数的一些概念,如倒数、相反数、绝对值等,在实数范围内仍然不变。1、相反数(1)实数 a 的相反数是 -a;实数与它的相反数是一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零)(2)从数轴上看, 互为相反数的两个数所对应的点关于原点对称,如果 a 与 b 互为相反数,则有 a+b=0,a=-b,反之亦成立。2、绝对值(1)要正确的理
5、解绝对值的几何意义,它表示的是数轴上的点到数轴原点的距离,数轴分为正负两半,那么不管怎样总有两个数字相等的正负两个数到原点的距离相等。|a| 0。(2)若|a|=a,则a 0;若|a|=-a,则a 0,零的绝对值是它本身。(3))0()0(aaaa3、倒数(1)如果 a与 b 互为倒数,则有ab=1,反之亦成立。实数a 的倒数是1/a(a0)(2)倒数等于本身的数是1 和-1。零没有倒数。精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - - - - - - - - - -第 2 页,共 11 页 - - - - - - - - - - 学习资料
6、收集于网络,仅供参考学习资料考点四、实数的三个非负性及性质1、在实数范围内,正数和零统称为非负数。2、非负数有三种形式(1)任何一个实数a 的绝对值是非负数,即|a|0;(2)任何一个实数a 的平方是非负数,即0;(3)任何非负数的算术平方根是非负数,即()。3、非负数具有以下性质(1)非负数有最小值零;(2)非负数之和仍是非负数;(3)几个非负数之和等于0,则每个非负数都等于0. 考点五、实数大小的比较实数的大小比较的法则跟有理数的大小比较法则相同:(1)正数大于0,0 大于负数,正数大于一切负数,两个负数比较,绝对值大的反而小;(2)实数和数轴上的点一一对应,在数轴上表示的两个数,右边的数
7、总比左边的数大;(3)两个数比较大小常见的方法有:求差法,求商法,倒数法,估算法,平方法。(4)对于一些带根号的无理数,我们可以通过比较它们的平方或者立方的大小。常用有理数来估计无理数的大致范围,要想正确估算需记熟020 之间整数的平方和0 10 之间整数的立方考点六、实数的运算(1)在实数范围内,可以进行加、减、乘、除、乘方及开方运算(2)有理数的运算法则和运算律在实数范围内仍然成立(3)实数混合运算的运算顺序与有理数的运算顺序基本相同,先乘方、开方、再乘除,最后算加减。同级运算按从左到右顺序进行,有括号先算括号里。(4)在实数的运算中,当遇到无理数时,并且需要求结果的近似值时,可以按照所要
8、求的精确度用相应的近似有限小数去代替无理数,再进行计算。6.1 平方根同步练习( 1)知识点:1. 算术平方根:一般地,如果一个正数的平方等于a,那么这个正数叫做a 的算术平方根。 A叫做被开方数。1平方根:如果一个数的平方等于a,那么这个数叫做a 的平方根2平方根的性质:正数有两个平方根,互为相反数 0的平方根是 0 负数没有平方根一、基础训练 19 的算术平方根是() A -3 B3 C 3 D81 2下列计算不正确的是()A4=2 B 2( 9)81=9 C 30.064=0.4 D3216=-6 3下列说法中不正确的是()精品资料 - - - 欢迎下载 - - - - - - - -
9、- - - 欢迎下载 名师归纳 - - - - - - - - - -第 3 页,共 11 页 - - - - - - - - - - 学习资料收集于网络,仅供参考学习资料 A9 的算术平方根是3 B16的平方根是 2 C27 的立方根是 3 D立方根等于 -1 的实数是 -1 4364的平方根是() A 8 B 4 C 2 D2 5-18的平方的立方根是()A 4 B18 C-14 D14 61681的平方根是 _;9 的立方根是 _二、能力训练 7一个自然数的算术平方根是x,则它后面一个数的算术平方根是() Ax+1 Bx2+1 Cx+1 D21x 8若 2m-4 与 3m-1是同一个数的
10、平方根,则m的值是() A-3 B1 C-3 或 1 D-1 9已知 x,y 是实数,且34x+(y-3 )2=0,则 xy 的值是() A4 B-4 C94 D-94 10若一个偶数的立方根比2 大,算术平方根比4 小,则这个数是_三、综合训练 11利用平方根、立方根来解下列方程(1) (2x-1 )2-169=0;(2)4( 3x+1)2-1=0 ;(3)274x3-2=0 ;(4)12(x+3)3=4平方根第 2 课时要点感知 1 一般地 ,如果一个数的平方等于a,那么这个数叫做a的_或_,这就是说 ,如果 x2=a,那么 x 叫做 a 的_. 预习练习 1-1 (2014梅州 )4 的
11、平方根是 _. 1-236 的平方根是 _,-4 是_的一个平方根. 要点感知2 求一个数a 的平方根的运算,叫做开平方,平方与开平方互为逆运算.正数有_个平方根 ,它们 _;0 的平方根是 _;负数 _. 预习练习 2-1 下列各数: 0,(-2)2,-22,-(-5)中,没有平方根的是_. 2-2下列各数是否有平方根?若有,求出它的平方根;若没有,请说明为什么?(1)(-3)2;(2)-42;(3)-(a2+1). 要点感知3正数a 的算术平方根可以用a表示;正数a 的负的平方根可以用表示精品资料 - - - 欢迎下载 - - - - - - - - - - - 欢迎下载 名师归纳 - -
12、 - - - - - - - -第 4 页,共 11 页 - - - - - - - - - - 学习资料收集于网络,仅供参考学习资料_,正数 a 的平方根可以用表示_,读作“ _”. 预习练习 3-1 计算:425=_,-425=_,425=_. 知识点 1 平方根1.6 的平方根是 ( ) A.4 B.4 C.8 D.8 2.下面说法中不正确的是( ) A.6 是 36 的平方根B.-6 是 36 的平方根C.36 的平方根是 6 D.36 的平方根是6 3.下列说法正确的是( ) A. 任何非负数都有两个平方根B.一个正数的平方根仍然是正数C.只有正数才有平方根D.负数没有平方根4.填表
13、:a 2 -2 37a294981 225 5.求下列各数的平方根:(1)100;(2)0.008 1;(3)2536. 知识点 2 平方根与算术平方根的关系6.下列说法不正确的是( ) A.21 的平方根是21B.49的平方根是23C.0.01 的算术平方根是0.1 D.-5 是 25 的一个平方根7.若正方形的边长为a,面积为 S,则( ) A.S 的平方根是a B.a 是 S的算术平方根C.a=SD.S=a8.已知 25x2-144=0,且 x 是正数,求2513x的值 . 9.下列说法正确的是( ) A. 因为 3 的平方等于9,所以 9 的平方根为3 B.因为-3 的平方等于9,所以
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 级数 平方根 练习
限制150内