导数与零点(共4页).doc
《导数与零点(共4页).doc》由会员分享,可在线阅读,更多相关《导数与零点(共4页).doc(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上 导数与零点考点一。求参数取值范围(1)设函数,若方程有且仅有一个实根,求的取值范围 解:(1) , 因为 当时, ;当时, ;当时, ;所以 当时,取极大值 ; 当时,取极小值 ;故当 或时, 方程仅有一个实根. 解得 或.(2)已知函数,若在处取得极值,直线y=m与的图象有三个不同的交点,求m的取值范围。解:因为在处取得极大值,所以所以由解得。在处取得极大值,在处取得极小值,又直线与函数的图象有三个不同点,则的范围是。(3)已知函数,若曲线与直线 有两个不同的交点,求的取值范围.解:由,得,令,得. 函数在区间上单调递减,在区间上单调递增,是的最小值. 当时,曲线
2、与直线最多只有一个交点; 当时,与直线有且只有两个不同交点.综上可知,的取值范围是. (4)已知函数,若直线与曲线没有公共点,求的最大值.解:,直线:与曲线没有公共点, 等价于关于的方程在上没有实数解,即关于的方程: 在上没有实数解. 当时,方程(*)可化为,在上没有实数解. 当时,方程(*)化为. 令,则有. 令,得, 当时,同时当趋于时,趋于, 从而的取值范围为.所以当时,方程(*)无实数解, 解得的取值范围是. 综上,得的最大值为. 考点二。判断零点个数,证明(1)已知函数. 证明: 曲线y = f (x) 与曲线有唯一公共点. 证明: 所以,曲线y=f(x)与曲线只有唯一公共点(0,1
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 导数 零点
限制150内