LTE功率控制的基本思路(共11页).docx
《LTE功率控制的基本思路(共11页).docx》由会员分享,可在线阅读,更多相关《LTE功率控制的基本思路(共11页).docx(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上LTE功率控制的基本思路1 概述 根据上行和下行信号的发送特点,LTE物理层定义了相应的功率控制机制。 对于上行信号,终端的功率控制在节电和抑制小区间干扰两方面具有重要意义,因此,上行功率控制是LTE重点关注的部分。小区内的上行功率控制,分别控制上行共享信道PUSCH、上行控制信道PUCCH、随机接入信道PRACH和上行参考信号SRS。PRACH信道总是采用开环功率控制的方式。其它信道/信号的功率控制,是通过下行PDCCH信道的TPC信令进行闭环功率控制。 对于下行信号,基站合理的功率分配和相互间的协调能够抑制小区间的干扰,提高同频组网的系统性能。严格来说,LTE的下
2、行方向是一种功率分配机制,而不是功率控制。不同的物理信道和参考信号之间有不同的功率配比。下行功率分配以开环的方式完成,以控制基站在下行各个子载波上的发射功率。下行RS一般以恒定功率发射。下行共享控制信道PDSCH功率控制的主要目的是补偿路损和慢衰落,保证下行数据链路的传输质量。下行共享信道PDSCH的发射功率是与RS发射功率成一定比例的。它的功率是根据UE反馈的CQI与目标CQI的对比来调整的,是一个闭环功率控制过程。在基站侧,保存着UE反馈的上行CQI值和发射功率的对应关系表。这样,基站收到什么样的CQI,就知道用多大的发射功率,可达到一定的信噪比(SINR)目标。2 上行功率控制 上行功率
3、控制可以兼顾两方面的需求,即UE的发射功率既足够大以满足QoS的要求,又足够小以节约终端电池并减少对其他用户的干扰。为了实现这个目标,上行链路功率控制必须使自己适应于无线传播信道的特征(包括路径损耗特征、阴影特征和快速衰落特征),并克服来自其他用户的干扰(包括小区内用户的干扰和相邻小区内用户的干扰)。 LTE功率控制室开环功控和闭环功控的组合,这样与纯粹的闭环功控相比,理论上需要的反馈信息量比较少,即只有当LTE UE不能准确估算功率设置时才需要闭环功控。根据路径损耗估算和开环算法,LTE系统为PSD(功率频谱密度,Power Spectral Density)发射设定了一个粗糙的操作点,这能
4、在最普通的路径损耗及阴影衰落场景中为平均的调制编码方法提供适当的PSD。围绕着开环操作点,LTE上行的闭环功率控制能提供更快的调整,这能够更好地控制干扰,并且更精细地调整功率以适应信道情况(包括快衰落变化)。由于LTE的上行链路是完全正交的,上行功率控制不需要象CDMA那样快,功控周期一般不超过几百赫兹。 每个UE根据接收到的参考信号RS的信号强度完成路径损耗测量,以确定要补偿部分路径损耗(fraction of the path-loss)需要多大的发射功率,因此也被称作Fractional Power Control(部分功率控制)。部分功率控制的参数由eNodeB决定,该参数的取值需要兼
5、顾平衡整体频谱效率和小区边缘性能。部分功率控制和闭环功率控制命令合作完成上行功率控制。 功率控制可以与频域资源分配策略相结合,以实现小区间的干扰协调,提高小区边缘性能和整体频谱效率。其中的一种干扰协调技术是为位于相邻小区的路径损耗相似的几个UE分配相同的时频资源,这样可以提高小区边缘的性能,避免那些离基站比较近的相邻小区UE引起的强干扰(特别是有些基站的前后比性能不理想)。 LTE上行链路对PUSCH、PUCCH和SRS进行功率控制。三种上行信道或者信号的功率控制的数学公式不同,但都可以分成两个基本的部分:1)根据eNodeB下发的静态或者半静态参数计算得到的基本开环操作点;2)每个子帧都可能
6、调整的动态偏置量,即: 每个RB的功率=基本开环操作点+动态偏置量 基本开环操作点取决于一系列因素,包括小区间的干扰状况和小区负荷,它可以进一步分成两部分:1)一个半静态功率基数值P0,P0可以分成适用所有小区内UE的通用功率数值,一个每个UE不同的偏置量;2)一个开环路径损耗补偿分量。 开环路径损耗补偿分量取决于UE对下行路径损耗的估算,后者由UE测量到的RSRP数值和已知的下行参考信号(RS)的发射功率计算而得。在一种极端情况下,eNodeB可以把P0设置为最小值-126dBm,完全根据UE测量的路径损耗的大小来调整上行功率。 如果执行完全路径损耗补偿方法能让小区边缘的UE得到最大程度的公
7、平对待,但是在多小区并存的现实部署环境中,实施部分路径损耗补偿方法能减少小区间的干扰,不需要为确保小区边缘用户的传输质量分配过多的资源,从而能提高系统的整体上行链路容量。因此LTE系统引入了部分路径损耗补偿因子,以平衡上行公平调度和整体频谱效率。当的取值为0.7-0.8时,既能让系统接近最大容量,又不让小区边缘的数据速率过多地下降。于是,每个RB的发射功率中的基本开环操作点被定义为: 基本开环操作点 = P0 +PL其中PL是Path Loss的缩写。 对于低速率的PUCCH信道(传送ACK/NACK和CQI信息),路径损耗补偿是和PUSCH分开实施。不同用户的PUCCH信道之间是码分复用(C
8、DMA),为了更好地控制彼此之间的干扰,PUCCH的功率控制采用完全路径损耗补偿方法。PUCCH的P0也和PUSCH不同。 每个RB的发射功率中的动态偏置量(Dynamic Offset)也可分成两个分量:1)MCS决定的分量;2)TPC(Transmitter Power Control)命令决定的分量。MCS决定的分量也叫TF(TF是Transport Format)的缩写。 综上所述,UE上行发射功率可以表达为: 以PUSCH为例,在子帧i,终端的PUSCH信道的发射功率可以表示为:PPUSCH(i)=minPCMAX,10lgMPUSCH(i)+PO_PUSCHj+jPL+TFi+f(
9、i) (dBm) 其中,(1)PCMAX表示终端的最大发射功率。(2)MPUSCH(i) 表示PUSCH的传输带宽(RB数目)(3)PO_PUSCHj是由高层信令设置的功率基准值,可以反应上行接收端的噪声水平。(4)的取值范围是0,0.4,0.5,0.6,0.7,0.8,0.9,1,表示部分功率控制算法中对大尺度衰落的补偿量,由高层信令使用3bit信息指示本小区所使用的数值。而PL是终端测量得到的下行大尺度损耗。(5)TFi表示由调制编码方式和数据类型(控制信息或者数据信息)所确定的功率偏移量。(6)f(i)是由终端闭环功率控制所形成的调整值,它的数值根据PDCCH format 0/3/3A
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- LTE 功率 控制 基本思路 11
限制150内