《复变函数与积分变换》期末考试试卷及答案(共21页).doc
《《复变函数与积分变换》期末考试试卷及答案(共21页).doc》由会员分享,可在线阅读,更多相关《《复变函数与积分变换》期末考试试卷及答案(共21页).doc(21页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上复变函数与积分变换期末试题(A)吉林大学南岭校区2011年12月题号一二三四五六总分得分得分得分一填空题(每小题3分,共计15分)1的幅角是( );2.的主值是( );3. ,( );4是 的( )极点;5 ,( );得分二选择题(每小题3分,共计15分)1解析函数的导函数为( );(A) ; (B);(C); (D).2C是正向圆周,如果函数( ),则(A) ; (B); (C); (D).3如果级数在点收敛,则级数在(A)点条件收敛 ; (B)点绝对收敛;(C)点绝对收敛; (D)点一定发散 下列结论正确的是( )(A)如果函数在点可导,则在点一定解析;(B) 如
2、果在C所围成的区域内解析,则(C)如果,则函数在C所围成的区域内一定解析;(D)函数在区域内解析的充分必要条件是、在该区域内均为调和函数5下列结论不正确的是( )(A) (B) (C) (D) 得分三按要求完成下列各题(每小题10分,共计40分)(1)设是解析函数,求(2)计算其中C是正向圆周:;(3)计算(4)函数在扩充复平面上有什么类型的奇点?,如果有极点,请指出它的级.得分四、(本题14分)将函数在以下区域内展开成罗朗级数;(1),(2),(3)得分 五(本题10分)用Laplace变换求解常微分方程定解问题得分六、(本题6分)求的傅立叶变换,并由此证明:复变函数与积分变换期末试题(A)
3、答案及评分标准一填空题(每小题3分,共计15分)1的幅角是(); 2.的主值是( );3. ,( 0 ),4是 的( 一级 )极点;5 ,(-1 );二选择题(每题4分,共24分)1解析函数的导函数为(B );(A) ; (B);(C); (D).2C是正向圆周,如果函数( D ),则(A) ; (B); (C); (D).3如果级数在点收敛,则级数在(C)(A)点条件收敛 ; (B)点绝对收敛;(C)点绝对收敛; (D)点一定发散 下列结论正确的是( B )(A)如果函数在点可导,则在点一定解析;(B) 如果在C所围成的区域内解析,则(C)如果,则函数在C所围成的区域内一定解析;(D)函数在
4、区域内解析的充分必要条件是、在该区域内均为调和函数5下列结论不正确的是( D ) 三按要求完成下列各题(每小题10分,共40分)(1)设是解析函数,求解:因为解析,由C-R条件 ,给出C-R条件6分,正确求导给2分,结果正确2分。(2)计算其中C是正向圆周:解:本题可以用柯西公式柯西高阶导数公式计算也可用留数计算洛朗展开计算,仅给出用前者计算过程因为函数在复平面内只有两个奇点,分别以为圆心画互不相交互不包含的小圆且位于c内无论采用那种方法给出公式至少给一半分,其他酌情给分。(3)解:设在有限复平面内所有奇点均在:内,由留数定理 -(5分) -(8分) -(10分)(4)函数在扩充复平面上有什么
5、类型的奇点?,如果有极点,请指出它的级.解 :(1)(2)(3)(4)(5)备注:给出全部奇点给5分 ,其他酌情给分。四、(本题14分)将函数在以下区域内展开成罗朗级数;(1),(2),(3)解:(1)当而 -6分(2)当= -10分(3)当 -14分每步可以酌情给分。五(本题10分)用Laplace变换求解常微分方程定解问题:解:对的Laplace变换记做,依据Laplace变换性质有 (5分)整理得 (7分) (10分)六、(6分)求的傅立叶变换,并由此证明:解: -3分 -4分- -5分, -6分 复变函数与积分变换期末试题(B)吉林大学南岭校区2011年12月题号一二三四五六总分得分一
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 复变函数与积分变换 函数 积分 变换 期末考试 试卷 答案 21
限制150内