排列组合问题经典题型解析含答案(共9页).doc
《排列组合问题经典题型解析含答案(共9页).doc》由会员分享,可在线阅读,更多相关《排列组合问题经典题型解析含答案(共9页).doc(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上排列组合问题经典题型与通用方法1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.例1.五人并排站成一排,如果必须相邻且在的右边,则不同的排法有( )A、60种 B、48种 C、36种 D、24种2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端.例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是( )A、1440种 B、3600种 C、4820种 D、4800种3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数
2、的方法.例3.A,B,C,D,E五人并排站成一排,如果必须站在的右边(可以不相邻)那么不同的排法有( )A、24种 B、60种 C、90种 D、120种4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成.例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有( ) A、6种 B、9种 C、11种 D、23种5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法.例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人
3、承担这三项任务,不同的选法种数是( ) A、1260种 B、2025种 C、2520种 D、5040种 (2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有( )A、种 B、种 C、种 D、种6.全员分配问题分组法:例6.(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种?(2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为( )A、480种 B、240种 C、120种 D、96种7.名额分配问题隔板法:例7:10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案?8.限制条件的分配问题
4、分类法:例8.某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案?9.多元问题分类法:元素多,取出的情况也多种,可按结果要求分成不相容的几类情况分别计数再相加。例9(1)由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有( )A、210种 B、300种 C、464种 D、600种(2)从1,2,3,100这100个数中,任取两个数,使它们的乘积能被7整除,这两个数的取法(不计顺序)共有多少种?(3)从1,2,3,100这100个数中任取两个数,使其和能被4整除的取法(不计顺序)
5、有多少种?10.交叉问题集合法:某些排列组合问题几部分之间有交集,可用集合中求元素个数公式例10.从6名运动员中选出4人参加4100米接力赛,如果甲不跑第一棒,乙不跑第四棒,共有多少种不同的参赛方案? 11.定位问题优先法:某个或几个元素要排在指定位置,可先排这个或几个元素;再排其它的元素。例11.现1名老师和4名获奖同学排成一排照相留念,若老师不站两端则有不同的排法有多少种?12.多排问题单排法:把元素排成几排的问题可归结为一排考虑,再分段处理。例12.(1)6个不同的元素排成前后两排,每排3个元素,那么不同的排法种数是( )A、36种 B、120种 C、720种 D、1440种(2)8个不
6、同的元素排成前后两排,每排4个元素,其中某2个元素要排在前排,某1个元素排在后排,有多少种不同排法?13.“至少”“至多”问题用间接排除法或分类法:例13.从4台甲型和5台乙型电视机中任取3台,其中至少要甲型和乙 型电视机各一台,则不同的取法共有 ( ) A、140种 B、80种 C、70种 D、35种14.选排问题先取后排:从几类元素中取出符合题意的几个元素,再安排到一定的位置上,可用先取后排法.例14.(1)四个不同球放入编号为1,2,3,4的四个盒中,则恰有一个空盒的放法有多少种?(2)9名乒乓球运动员,其中男5名,女4名,现在要进行混合双打训练,有多少种不同的分组方法?15.部分合条件
7、问题排除法:在选取的总数中,只有一部分合条件,可以从总数中减去不符合条件数,即为所求.例15.(1)以正方体的顶点为顶点的四面体共有( )A、70种 B、64种 C、58种 D、52种(2)四面体的顶点和各棱中点共10点,在其中取4个不共面的点,不同的取法共有( )A、150种 B、147种 C、144种 D、141种16.圆排问题单排法:把个不同元素放在圆周个无编号位置上的排列,顺序(例如按顺时钟)不同的排法才算不同的排列,而顺序相同(即旋转一下就可以重合)的排法认为是相同的,它与普通排列的区别在于只计顺序而首位、末位之分,下列个普通排列:在圆排列中只算一种,因为旋转后可以重合,故认为相同,
8、个元素的圆排列数有种.因此可将某个元素固定展成单排,其它的元素全排列.例16.有5对姐妹站成一圈,要求每对姐妹相邻,有多少种不同站法?17.可重复的排列求幂法:允许重复排列问题的特点是以元素为研究对象,元素不受位置的约束,可逐一安排元素的位置,一般地个不同元素排在个不同位置的排列数有种方法.例17.把6名实习生分配到7个车间实习共有多少种不同方法?18.复杂排列组合问题构造模型法:例18.马路上有编号为1,2,3,9九只路灯,现要关掉其中的三盏,但不能关掉相邻的二盏或三盏,也不能关掉两端的两盏,求满足条件的关灯方案有多少种?19.元素个数较少的排列组合问题可以考虑枚举法:例19.设有编号为1,
9、2,3,4,5的五个球和编号为1,2,3,4,5的盒子现将这5个球投入5个盒子要求每个盒子放一个球,并且恰好有两个球的号码与盒子号码相同,问有多少种不同的方法?20.复杂的排列组合问题也可用分解与合成法:例20.(1)30030能被多少个不同偶数整除?(2)正方体8个顶点可连成多少队异面直线?21.利用对应思想转化法:对应思想是教材中渗透的一种重要的解题方法,它可以将复杂的问题转化为简单问题处理.例21.(1)圆周上有10点,以这些点为端点的弦相交于圆内的交点有多少个?(2)某城市的街区有12个全等的矩形组成,其中实线表示马路,从A到B的最短路径有多少种?22.全错位排列问题公式法:全错位排列
10、问题(贺卡问题,信封问题)记住公式即可瑞士数学家欧拉按一般情况给出了一个递推公式: 用A、B、C表示写着n位友人名字的信封,a、b、c表示n份相应的写好的信纸。把错装的总数为记作f(n)。假设把a错装进B里了,包含着这个错误的一切错装法分两类: (1)b装入A里,这时每种错装的其余部分都与A、B、a、b无关,应有f(n-2)种错装法。 (2)b装入A、B之外的一个信封,这时的装信工作实际是把(除a之外的) 份信纸b、c装入(除B以外的)n1个信封A、C,显然这时装错的方法有f(n-1)种。总之在a装入B的错误之下,共有错装法f(n-2)+f(n-1)种。a装入C,装入D的n2种错误之下,同样都
11、有f(n-2)+f(n-1)种错装法,因此:得到一个递推公式: f(n)=(n-1) f(n-1)+f(n-2),分别带入n=2、3、4等可推得结果。也可用迭代法推导出一般公式: 排列组合问题经典题型与通用方法解析版1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列.例1.五人并排站成一排,如果必须相邻且在的右边,则不同的排法有( )A、60种 B、48种 C、36种 D、24种解析:把视为一人,且固定在的右边,则本题相当于4人的全排列,种,答案:.2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个
12、元素的空位和两端.例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是( )A、1440种 B、3600种 C、4820种 D、4800种解析:除甲乙外,其余5个排列数为种,再用甲乙去插6个空位有种,不同的排法种数是种,选.3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法.例3.五人并排站成一排,如果必须站在的右边(可以不相邻)那么不同的排法有( )A、24种 B、60种 C、90种 D、120种解析:在的右边与在的左边排法数相同,所以题设的排法只是5个元素全排列数的一半,即种,选.4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素
13、按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成.例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有( )A、6种 B、9种 C、11种 D、23种解析:先把1填入方格中,符合条件的有3种方法,第二步把被填入方格的对应数字填入其它三个方格,又有三种方法;第三步填余下的两个数字,只有一种填法,共有331=9种填法,选.5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法.例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是( )A、1
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 排列组合 问题 经典 题型 解析 答案
限制150内