椭圆-双曲线-抛物线知识点(共6页).doc
《椭圆-双曲线-抛物线知识点(共6页).doc》由会员分享,可在线阅读,更多相关《椭圆-双曲线-抛物线知识点(共6页).doc(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上椭圆标准方程(焦点在轴)(焦点在轴)定 义第一定义:平面内与两个定点,的距离的和等于定长(定长大于两定点间的距离)的点的轨迹叫做椭圆,这两个定点叫焦点,两定点间距离焦距。第二定义:平面内一个动点到一个定点的距离和它到一条定直线的距离的比是小于1的正常数时,这个动点的轨迹叫椭圆,定点是椭圆的焦点,定直线是椭圆的准线。范 围 顶点坐标 对 称 轴轴,轴;长轴长为,短轴长为对称中心原点焦点坐标 焦点在长轴上,; 焦距:离 心 率 () ,,越大椭圆越扁,越小椭圆越圆。准线方程准线垂直于长轴,且在椭圆外;两准线间的距离:顶点到准线的距离顶点()到准线()的距离为顶点()到准线
2、()的距离为焦点到准线的距离焦点()到准线()的距离为焦点()到准线()的距离为椭圆上到焦点的最大(小)距离最大距离为:最小距离为:相关应用题:远日距离近日距离椭圆的参数方程(为参数)(为参数)椭圆上的点到给定直线的距离利用参数方程简便:椭圆(为参数)上一点到直线的距离为:直线和椭圆的位置椭圆与直线的位置关系:利用转化为一元二次方程用判别式确定。相交弦AB的弦长通径:过椭圆上一点的切线 利用导数 利用导数双曲线双曲线标准方程(焦点在轴)标准方程(焦点在轴)定义第一定义:平面内与两个定点,的距离的差的绝对值是常数(小于)的点的轨迹叫双曲线。这两个定点叫做双曲线的焦点,两焦点的距离叫焦距。PP第二
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 椭圆 双曲线 抛物线 知识点
限制150内