数学:第2章《不等式》学案(沪教版高一上)(共29页).doc
《数学:第2章《不等式》学案(沪教版高一上)(共29页).doc》由会员分享,可在线阅读,更多相关《数学:第2章《不等式》学案(沪教版高一上)(共29页).doc(29页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上不等式【知识网络】同加性 传递性同乘性对称性不等式的性质实数比较大小不等式的证明综合法分析法比较法常规方法特殊方法换元法放缩法判别式法法反证法数学归纳法法解不等式基本类型不等式的解法n元均值不等式绝对值不等式的性质一元一次不等式一元一次不等式一元一次不等式一元一次不等式一元一次不等式一元一次不等式一元一次不等式11 不等式的性质【考点透视】一、考纲指要1理解不等式的性质及其证明.二、命题落点1不等式的性质主要以客观题形式出现往往融于其他问题之中,.如例1,例22利用不等式的性质结合已知条件比较大小、判断不等式有关结论是否成立或利用不等式研究变量的范围,求字母的取值或取
2、值范围等.如练习9.【典例精析】例1 : 若则下列不等式不能成立的是( )A B C D 解析: 由 知 ab 0, 因此成立;由 得由于是减函数, 所以亦成立,故一定不成立的是B答案:B例2:(2003北京)设a,b,c,dR,且ab,cd,则下列结论中正确的是( )Aa+cb+d Bacbd Cacbd D解析:ab,cd,a+cb+D 答案:A例3:(2005福建)不等式的解集是( )ABCD解析:不等式的解是x或x成立; (3)求证: (1+), 121 5!=120, 6!=720, n5取N=5, nN时, 原不等式成立. (3) (1+)展开式通项: T=C()= (r=0, 1
3、, 2, 3, , n)(1+)0,y0,且恒成立,则a的最小值是( )A2BC2D13已知则一定有( )ABC D4已知,则( )A B C D 5给出下列3个命题:若,则;若,则;若 且,则,其中真命题的序号为_6已知两个正数满足,则使不等式恒成立的实数m的取值范围 是 7(1)求证; (2) 求证 8已知函数的最大值不大于,又当 (1)求a的值; (2)设9数列由下列条件确定: (1)证明:对于, (2)证明:对于1.4不等式的解法.【考点透视】一、考纲指要1掌握简单不等式的解法.二、命题落点1主要考查一元二次不等式、对数不等式、指数不等式的解法主要考查非整式不等式的转化方法;如例1,例
4、2;2考查含参分式不等式的解法以及分类讨论的思想方法.如例3.【典例精析】例1:(2005重庆)不等式组的解集为( )ABCD解析:的解集为,的解集为不等式的解集为答案:C例2:(2005辽宁)若,则a的取值范围是()ABCD解析:法一:代特殊值验证 法二:当,即时,无解;当,即时,答案:C例3:(2005江西)已知函数(a,b为常数)且方程f(x)x+12=0有两个实根为x1=3, x2=4.(1)求函数f(x)的解析式;(2)设,解关于x的不等式;解析:(1)将,得(2)不等式即为,即当当【常见误区】1解分式不等式时忘掉分式成立的条件或对函数的单调形运用错误;2解含参数不等式时对字母讨论不
5、全面.【基础演练】1(2004天津) 不等式的解集为( )A B C D 2不等式的解集为则实数a的取值集合为( )A B 1 C a| a1D 3(2005辽宁)在上定义运算:若不等式对 任意实数x成立,则( )ABCD4设函数 ,则使得的自变量的取值范围为( )A B C D5已知则不等式5的解集是 . 6( 2004全国)设函数则实数a的取值范围是 7实系数方程的一根大于0且小于1, 另一个根大于1且小于2, 求的 取值范围.8解关于x的不等式0(aR)9记函数f(x)=的定义域为A, g(x)=lg(xa1)(2ax)(a1) 的定义域为B (1)求A; (2)若BA, 求实数a的取值
6、范围.15 含有绝对值的不等式【考点透视】一、考纲指要1掌握绝对值不等式的概念及其性质.2理解不等式a-ba+ba+b.二、命题落点1含绝对值不等式的解法主要出现在选择题、填空题中;如例1,例2;2证明主要出现在解答题中对能力要求较高.如例3.【典例精析】例1: (2004辽宁) 设全集U=R 解关于x的不等式解析: 由当时,解集是R;当时,解集是例2:(2005山东),下列不等式一定成立的是()ABCD解析: 0a1,01a1, , 答案: A例3:(2005浙江)已知函数f(x)和g(x)的图象关于原点对称,且f(x)x22x (1)求函数g(x)的解析式; (2)解不等式g(x)f(x)
7、|x1|解析:(1)设函数y=f(x)的图象上任一点Q(xq,yq关于原点的对称点(x,y),则即点 在函数的图象上, 故(2)由g(x)f(x)|x1|,可得2x2-|x-1|0当x1时,2x2-x+10,此时不等式无解;当x1时,2x2+x-10,-1x因此,原不等式的解集为-1,【常见误区】1运用不等式a-ba+ba+b时出现错误;2对绝对值的意义理解有误,分类不全面导致错误.【基础演练】1不等式的解集是( )A B C D2不等式的解集是( )A BCD 3若不等式的解集为(1,2),则实数a等于( )A8B2C4D84若,R,则不等式的解集为R的充要条件是( )A B C且D且5不等
8、式|x+2|x|的解集是 .6不等式的解集 .7解不等式.8设且求证: 9某段城铁线路上依次有A、B、C三站,AB=5km,BC=3km,在列车运行时刻表上,规定列车8时整从A站发车,8时07分到达B站并停车1分钟,8时12分到达C站.在实际运行中,假设列车从A站正点发车,在B站停留1分钟,并在行驶时以同一速度匀速行驶,列车从A站到达某站的时间与时刻表上相应时间之差的绝对值称为列车在该站的运行误差. (1)分别写出列车在B、C两站的运行误差; (2)若要求列车在B,C两站的运行误差之和不超过2分钟,求的取值范围. 16 不等式的应用【考点透视】一、考纲指要1考查运用不等式在几何、函数,以及实际
9、生活中的运用二、命题落点1常结合函数、数列考查不等式的运用,特别是均值不等式的运用如例1,例2,例3.【典例精析】例1:(2004广西卷)某村计划建造一个室内面积为800的矩形蔬菜温室。在温室内,沿左右两侧与后侧内墙各保留1宽的通道,沿前侧内墙保留3宽的空地。当矩形温室的边长各为多少时?蔬菜的种植面积最大。最大种植面积是多少?解析:设矩形温室的左侧边长为a m,后侧边长为b m,则 ab=800.图5-6-1蔬菜的种植面积 所以 当答:当矩形温室的左侧边长为40m,后侧边长为20m时,蔬菜的种植面积最大,最大种植面积为648m2.例2:(2004上海)某单位用木料制作如图5-6-1所示的框架,
10、 框架的下部是边长分别为x、y(单位:m)的矩形.上部是等腰直角三角形. 要求框架围成的总面积8m2. 问x、y分别为多少(精确到0.001m) 时用料最省?解析:由题意得xy+x2=8, y=(0x4). 于是, 框架用料长度为 l=2x+2y+2()=(+)x+=4.当(+)x=,即x=84时等号成立.此时, x2.343,y=22.828. 故当x为2.343m,y为2.828m时, 用料最省.例3:某厂家拟在2004年举行促销活动,经调查测算,该产品的年销售量(即该厂的年产量)x万件与年促销费用m万元()(k为常数),如果不搞促销活动,则该产品的年销售量只能是1万件。已知2004年生产
11、该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金) (1)将2004年该产品的利润y万元表示为年促销费用m万元的函数; (2)该厂家2004年的促销费用投入多少万元时,厂家的利润最大?解析:(1)由题意可知当每件产品的销售价格为,2004年的利润 (2),(万元)【常见误区】1不能正确建立函数模型从而导致错误;2对实际情况考虑不够会产生多解或漏解【基础演练】1王先生购买了一部手机,欲使用中国移动“神州行”卡或加入联通的130网,经调查其收费 标准见下表:(注:本地话费以分为计费单位,
12、长途话费以秒为计费单位.)网 络月租费本地话费长途话费甲:联通13012元0.36元/分0.06元/秒乙:移动“神州行”0.60元/分0.07元/秒 若王先生每月拨打本地电的时间是拨打长途电话时间的5倍,若要用联通130应最少打多 长时间的电话才合算()A300秒B400秒C500秒D600秒2一批物品要用11辆汽车从甲地运到360外的乙地.若车速为/时,且车的距离不能少于,则运完这批物品至少需要( )A11小时B10小时C13小时D12小时3现有一块长轴为10分米,短轴长为8分米的椭圆形玻璃镜子,欲从此镜子中划出一块面积尽可能大的矩形镜子,则可划出的矩形镜子的最大面积为 ( )A10平方分米
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 不等式 数学 沪教版高一上 29
限制150内