数学归纳法经典例题详解(共4页).doc
《数学归纳法经典例题详解(共4页).doc》由会员分享,可在线阅读,更多相关《数学归纳法经典例题详解(共4页).doc(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上例1用数学归纳法证明:请读者分析下面的证法:证明:n=1时,左边,右边,左边=右边,等式成立假设n=k时,等式成立,即:那么当n=k+1时,有: 这就是说,当n=k+1时,等式亦成立由、可知,对一切自然数n等式成立评述:上面用数学归纳法进行证明的方法是错误的,这是一种假证,假就假在没有利用归纳假设n=k这一步,当n=k+1时,而是用拆项法推出来的,这样归纳假设起到作用,不符合数学归纳法的要求正确方法是:当n=k+1时这就说明,当n=k+1时,等式亦成立,例2是否存在一个等差数列an,使得对任何自然数n,等式:a1+2a2+3a3+nan=n(n+1)(n+2)都成立,
2、并证明你的结论分析:采用由特殊到一般的思维方法,先令n=1,2,3时找出来an,然后再证明一般性 解:将n=1,2,3分别代入等式得方程组,解得a1=6,a2=9,a3=12,则d=3故存在一个等差数列an=3n+3,当n=1,2,3时,已知等式成立下面用数学归纳法证明存在一个等差数列an=3n+3,对大于3的自然数,等式a1+2a2+3a3+nan=n(n+1)(n+2)都成立因为起始值已证,可证第二步骤 假设n=k时,等式成立,即a1+2a2+3a3+kak=k(k+1)(k+2)那么当n=k+1时, a1+2a2+3a3+kak +(k+1)ak+1= k(k+1)(k+2)+ (k+1
3、)3(k+1)+3=(k+1)(k2+2k+3k+6)=(k+1)(k+2)(k+3)=(k+1)(k+1)+1(k+1)+2这就是说,当n=k+1时,也存在一个等差数列an=3n+3使a1+2a2+3a3+nan=n(n+1)(n+2)成立综合上述,可知存在一个等差数列an=3n+3,对任何自然数n,等式a1+2a2+3a3+nan=n(n+1)(n+2)都成立例3证明不等式 (nN)证明:当n=1时,左边=1,右边=2左边右边,不等式成立假设n=k时,不等式成立,即那么当n=k+1时,这就是说,当n=k+1时,不等式成立由、可知,原不等式对任意自然数n都成立说明:这里要注意,当n=k+1时
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 数学 归纳法 经典 例题 详解
限制150内