《等比数列教案——经典(共6页).doc》由会员分享,可在线阅读,更多相关《等比数列教案——经典(共6页).doc(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上等比数列教学设计(共2课时)第一课时 1、创设情境,提出问题 (阅读本章引言并打出幻灯片)情境1:本章引言内容提出问题:同学们,国王有能力满足发明者的要求吗?引导学生写出各个格子里的麦粒数依次为:1,2, , (1)于是发明者要求的麦粒总数是情境2:某人从银行贷款10000元人民币,年利率为r,若此人一年后还款,二年后还款,三年后还款,还款数额依次满足什么规律?10000(1+r),10000,10000, (2)情境3:将长度为1米的木棒取其一半,将所得的一半再取其一半,再将所得的木棒继续取其一半,各次取得的木棒长度依次为多少? (3)问:你能算出第7次取一半后的长
2、度是多少吗?观察、归纳、猜想得2、自主探究,找出规律: 学生对数列(1),(2),(3)分析讨论,发现共同特点:从第二项起,每一项与前一项的比都等于同一常数。也就是说这些数列从第二项起,每一项与前一项的比都具有“相等”的特点。于是得到等比数列的定义:一般地,如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列叫做等比数列。这个常数叫做等比数列的公比,公比常用字母表示,即。如数列(1),(2),(3)都是等比数列,它们的公比依次是2,1+r,点评:等比数列与等差数列仅一字之差,对比知从第二项起,每一项与前一项之“差”为常数,则为等差数列,之“比”为常数,则为等比数列,此常数
3、称为“公差”或“公比”。3、观察判断,分析总结:观察以下数列,判断它是否为等比数列,若是,找出公比,若不是,说出理由,然后回答下面问题:1,3,9,27,1,-2,4,-8,-1,-1,-1,-1,1,0,1,0,思考:公比能为0吗?为什么?首项能为0吗?公比是什么数列?数列递增吗?数列递减吗?等比数列的定义也恰好给出了等比数列的递推关系式: 这一递推式正是我们证明等比数列的重要工具。 选题分析;因为等差数列公差可以取任意实数,所以学生对公比往往忘却它不能取0和能取1的特殊情况,以致于在不为具体数字(即为字母运算)时不会讨论以上两种情况,故给出问题以揭示学生对公比有防患意识,问题是让学生明白时
4、等比数列的单调性不定,而时数列为摆动数列,要注意与等差数列的区别。备选题:已知则,成等比数列的从要条件是什么?4、观察猜想,求通项: 方法1:由定义知道归纳得:等比数列的通项公式为: (说明:推得结论的这一方法称为归纳法,不是公式的证明,要想对这一方式的结论给出严格的证明,需在学习数学归纳法后完成,现阶段我们只承认它是正确的就可以了)方法2:迭代法 根据等比数列的定义有方法3:由递推关系式或定义写出:,通过观察发现 ,即: (此证明方法称为“累商法”,在以后的数列证明中有重要应用) 公式的特征及结构分析:(1) 公式中有四个基本量:,可“知三求一”,体现方程思想。(2) 的下标与的上标之和,恰
5、是的下标,即的指数比项数少1。5、问题探究:通项公式的应用例、已知数列是等比数列,求的值。备选题:已知数列满足条件:,且。求的值6、课堂演练:教材138页1、2题 备选题1:已知数列为等比数列,求的值 备选题2:公差不为0的等差数列中,依次成等比数列,则公比等于 7、归纳总结: (1)等比数列的定义,即 (2)等比数列的通项公式及推导过程。 选作:1、已知数列为等比数列,且,求 2、已知数列满足 (1)求证:是等比数列;。 (2)求的通项。第二课时1、 复习回顾:上节课,我们学习了(打出幻灯片)(1) 等比数列定义:(2) 通项公式: (3)若,数列是等比数列吗?对不对?(注意:考虑公比为常数
6、)2、 尝试练习:在等比数列中 (1),求 (2)求 (3)在2与8之间插入一个数A,使2,A,8成等比数列,求A(鼓励学生尝试用不同的方法求解,相互讨论分析不同的解法,然后归纳出等比数列的性质)3、性质探究:(1)若a,G,b成等比数列,则有,称G为a,b的等比中项,即;思考:是谁的等比中项?呢?呢?总结归纳得到性质(2) (2) 逆向思考:若数列满足,它一定是等比数列吗?(3)若,则(4)4、灵活运用:下面我们来看应用等比数列性质可以解决那些问题。例1、 在等比数列中,求变式1、等比数列中,若,则 变式2、等比数列中,若,则 变式3、等比数列中,若,则 例2、 已知数列是项数相同的等比数列
7、,求证:是等比数列。变式1、已知数列是项数相同的等比数列,问数列是等比数列吗?变式2、已知数列是等比数列,若取出所有偶数项组成一个新数列,此数列还是等比数列吗?若是,它的首项和公比分别为多少?变式3、已知数列是等比数列,若取出组成一个新数列,此数列还是等比数列吗?若是,它的首项和公比分别为多少?变式4、已知数列是等比数列,若每一项乘以非零常数C组成一个新数列,此数列还是等比数列吗?若是,它的首项和公比分别为多少?(通过上述问题的讨论求解,归纳、总结、推广得出等比数列的一些性质)例3、 三个数成等比数列,它们的和为14,它们的积为64,求这三个数。备选题、有四个数,前三个数成等比数列,其和为19,后三个数成等差数列,其和为12,求这四个数。5、课堂演练:教材138页3、4、5备选题:已知数列为等比数列,且则 备选题:有四个数,前三个数成等比数列,后三个数成等差数列,首末两项和为21,中间两项的和为18,求这四个数。6、归纳总结:(1)等比中项的概念 (2)等比数列有关性质7、课后作业:必作:教材139页习题6、7、10、11 选作:1、在数列中,且成等差数列,成等比数列,求的值。2、设,且能按某种顺序构成等比数列,求这个等比数列。专心-专注-专业
限制150内