解析几何三角形面积问题(共4页).doc
《解析几何三角形面积问题(共4页).doc》由会员分享,可在线阅读,更多相关《解析几何三角形面积问题(共4页).doc(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上解析几何三角形面积问题1、已知两定点,满足的动点的轨迹是曲线.() 求曲线的标准方程;()直线与曲线交于两点, 求面积的最大值.2、已知椭圆的离心率为,且椭圆上一点到两个焦点的距离之和为.斜率为的直线过椭圆的上焦点且与椭圆相交于两点,线段的垂直平分线与y轴相交于点.(1)求椭圆的标准方程;(2)求的取值范围.(3)试用表示的面积,并求面积的最大值.3、(2012潍坊期末)如图,椭圆G的中心在坐标原点,其中一个焦点为圆F:的圆心,右顶点是圆F与x轴的一个交点已知椭圆G与直线l:相交于A、B两点(I)求椭圆的方程;()求AOB面积的最大值4、直线与椭圆交于,两点,已知,若
2、且椭圆的离心率,又椭圆经过点,为坐标原点.(1)求椭圆的方程;(2)若直线过椭圆的焦点(为半焦距),求直线的斜率的值;(3)试问:的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.5、已知椭圆的焦点坐标为(-1,0),(1,0),过垂直于长轴的直线交椭圆于P、Q两点,且|PQ|=3,(1) 求椭圆的方程;(2) 过的直线l与椭圆交于不同的两点M、N,则MN的内切圆的面积是否存在最大值?若存在求出这个最大值及此时的直线方程;若不存在,请说明理由.6、椭圆E的中心在坐标原点O,焦点在x轴上,离心率为,点P(1,),A,B在椭圆E上,且+=m (mR)(1) 求椭圆E的方程及直线AB的斜率
3、;求证:当PAB的面积取得最大值时,原点O是PAB的重心7、已知椭圆C:1(ab0)的离心率为,短轴一个端点到右焦点的距离为(1)求椭圆C的方程;(2)设直线l与椭圆C交于A、B两点,坐标原点O到直线l的距离为,求AOB面积的最大值8、已知A(,0),B(,0)为平面内两定点,动点P满足|PA|+|PB|=2(I)求动点P的轨迹方程;(II)设直线与(I)中点P的轨迹交于M、N两点求BMN的最大面积及此时直线l的方程.9、平面直角坐标系内已知两点A(-1,0)、B(1,0),若将动点P(x,y)的横坐标保持不变,纵坐标扩大到原来的倍后得到点Q(x,y),且满足=1.()求动点P所在曲线C的方程
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 解析几何 三角形 面积 问题
限制150内