第二讲--全等三角形的性质和判定(共6页).doc
《第二讲--全等三角形的性质和判定(共6页).doc》由会员分享,可在线阅读,更多相关《第二讲--全等三角形的性质和判定(共6页).doc(6页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上第二讲 全等三角形的性质与判定【知识梳理】1能够完全重合的两个三角形叫全等三角形.全等三角形的形状和大小完全相同;2全等三角形性质:全等三角形对应边相等,对应角相等;全等三角形对应高、角平分线、中线相等;全等三角形对应周长相等,面积相等;3全等三角形判定方法有:SAS,ASA,AAS,SSS,对于两个直角三角形全等的判定方法,除上述方法外,还有HL法;4证明两个三角形全等的关键,就是证明两个三角形满足判定方法中的三个条件,具体分析步骤是先找出两个三角形中相等的边或角,再根据选定的判定方法,确定还需要证明哪些相等的边或角,再设法对它们进行证明;5证明两个三角形全等,根据
2、条件,有时能直接进行证明,有时要证的两个三角形并不全等,这时需要添加辅助线构造全等三角形,构造全等三角形常用的方法有:平移、翻折、旋转、等倍延长线中线、截取等等.【例题精析】【例】如图,ABEFDC,ABC90,ABCD,那么图中有全等三角形( )BACDEFA5对B4对C3对D2对【解法指导】从题设题设条件出发,首先找到比较明显的一对全等三角形,并由此推出结论作为下面有用的条件,从而推出第二对,第三对全等三角形.这种逐步推进的方法常用到.【变式题组】1下列判断中错误的是( )A有两角和一边对应相等的两个三角形全等 B有两边和一角对应相等的两个三角形全等C有两边和其中一边上的中线对应相等的两个
3、三角形全等D有一边对应相等的两个等边三角形全等AFCEDB2已知命题:如图,点A、D、B、E在同一条直线上,且ADBE,AFDE,则ABCDEF.判断这个命题是真命题还是假命题,如果是真命题,请给出证明;如果是假命题,请添加一个适当条件使它成为真命题,并加以证明.3已知线段AC与BD相交于点O, 连接AB、DC,E为OB的中点,F为OC的中点,连接EF(如图所示).添加条件AD,OEFOFE,求证:ABDC;ABCDOFE分别将“AD”记为,“OEFOFE”记为,“ABDC”记为,添加、,以为结论构成命题1;添加条件、,以为结论构成命题2.命题1是_命题,命题2是_命题(选择“真”或“假”填入
4、空格).【例】已知ABDC,AEDF,CFFB. 求证:AFDE.【解法指导】想证AFDE,首先要找出AF和DE所在的三角形.AF在AFB和AEF中,而DE在CDE和DEF中,因而只需证明ABFDCE或AEFDFE即可.然后再根据已知条件找出证明它们全等的条件.ACEFBD证明:FBCE FBEFCEEF,即BECF在ABE和DCF中, ABEDCF(SSS) BC在ABF和DCE中, ABFDCE AFDE【例】如图,ABCDEF,将ABC和DEF的顶点B和顶点E重合,把DEF绕点B顺时针方向旋转,这时AC与DF相交于点O.当DEF旋转至如图位置,点B(E)、C、D在同一直线上时,AFD与D
5、CA的数量关系是_;当DEF继续旋转至如图位置时,中的结论成立吗?请说明理由_.B(E)OCF图FABCDEFAB(E)CDDA图图【解法指导】AFDDCAAFDDCA理由如下:由ABCDEF,ABDE,BCEF, ABCDEF, BACEDF ABCFBCDEFCBF, ABFDEC在ABF和DEC中, ABFDEC BAFDEC BACBAFEDFEDC, FACCDF AODFACAFDCDFDCAAFDDCA【变式题组】1一张长方形纸片沿对角线剪开,得到两种三角形纸片,再将这两张三角形纸片摆成如下图形式,使点B、F、C、D在同一条直线上.求证:ABED;若PBBC,找出图中与此条件有关
6、的一对全等三角形,并证明.BFACENMPDDACBFE【例】已知,如图,BD、CE分别是ABC的边A C和AB边上的高,点P在BD的延长线,BPAC,点Q在CE上,CQAB. 求证: APAQ;APAQ【解法指导】证明线段或角相等,也就是证线段或角所在的两三角形全等.经观察,证APAQ,也就是证APD和AQE,或APB和QAC全等,由已知条件BPAC,CQAB,应该证APBQAC,已具备两组边对应相等,于是再证夹角12即可. 证APAQ,即证PAQ90,PADQAC90就可以.21ABCPQEFD证明:BD、CE分别是ABC的两边上的高,BDACEA90, 1BAD90,2BAD90,12.
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 第二 全等 三角形 性质 判定
限制150内