《金属腐蚀与防护(共8页).doc》由会员分享,可在线阅读,更多相关《金属腐蚀与防护(共8页).doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上金属腐蚀与防护陈一凡材料与化学学院金属的腐蚀的过程是金属和周围介质作用转变成金属化合物的过程,实际上就是金属和介质之间发生氧化还原反应。考察实际发生的腐蚀过程发现,氧化还原反应根据条件不同,将分别按以下两种不同的历程进行:化学腐蚀(chemical corrosion) 金属表面与非电解质发生纯化学反应而引起的损坏。通常在干燥气体及非电解质溶液(如石油、苯、醇等)中进行。特点:在腐蚀过程中,电子的传递在金属与氧化剂之间进行,腐蚀不产生电流。例如,化工厂里的氯气与铁反应生成氯化亚铁。电化学腐蚀(electrochemical corrosion) 金属表面与电解质溶液发
2、生电化学反应而产生的破坏,反应过程中有电流产生。电化学腐蚀至少有一个阳极反应和阴极反应,并有流过金属内部的电子流和介质中的离子流构成电流回路。阳极反应:金属的氧化过程,金属失去电子而成为离子,进入溶液;阴极反应:氧化剂的还原过程,电子在阴极被氧化剂(氧气、H+)吸收。电化学腐蚀原理金属与环境介质发生电化学作用而引起的破坏过程称为电化学腐蚀。主要是金属在电解质溶液、天然水、海水、土壤、熔盐及潮湿的大气中引起的腐蚀。它的特点是在腐蚀过程中,金属上有腐蚀电流产生,而且腐蚀反应的阳极过程和阴极过程是分区进行的。金属的电化学腐蚀基本上是原电池作用的结果。金属与溶液的界面特性双电层德国化学家W.H.Ner
3、nst在1889年提出“双电层理论”对电极电势给予了说明。1金属浸入电解质溶液中,其表面上的金属正离子由于受到极性水分子的吸引,发生水化作用,有进入溶液而形成离子的倾向,将电子留在金属表面。如果水化时所产生的水化能足以克服金属晶格中金属离子与电子间的引力,则金属离子脱离金属表面进入与金属表面相接触的溶液层中形成水化离子,金属晶格上的电子受水分子电子壳层同性电荷的排斥,不能进入溶液,仍然留在金属内。界面电势差在金属与溶液的界面上,由于正、负离子静电吸引和热运动两种效应的结果,溶液中的离子只有一部分紧密地排在固体表面附近,相距约一、二个离子厚度称为紧密层; 另一部分离子按一定的浓度梯度扩散到本体溶
4、液中,称为扩散层。紧密层和扩散层构成了双电层。金属表面与溶液本体之间的电势差即为界面电势差。电极电位通常把浸在电解质溶液中且其界面处进行电化学反应的金属称为电极,电极和溶液界面上进行的电化学反应称为电极反应,而由电极反应使电极和溶液界面上建立起的双电层电位跃称为金属在该溶液中的电极电位。21、平衡电极电位可用能斯特方程式计算金属浸入含有同种金属离子的溶液中的电极反应,参与物质迁移的是同一种金属离子。特点:正逆过程的物质迁移与电荷运送速度都相同。能斯特(Nernst)方程式:2、非平衡电极电位只能用实验测定当金属浸入不含同种金属离子的溶液中时,电极上同时存在两种或两种以上不同物质参与的电化学反应
5、。化工设备在绝大多数情况下都是发生非平衡电极电位。特点:正逆过程的物质始终不能达到平衡。3、气体电极的平衡电位能斯特方程式计算像铂这种许多其它金属或能导电的非金属材料都能吸附氢形成氢电极。此外,被吸附的气体除了氢外,还可以是氧、氯等并形成相应的氧电极、氯电极等。计算公式:电极的极化作用金属发生电化学腐蚀的原因是由于形成了腐蚀原电池。而任一个腐蚀原电池的反应包活两个电极过程及一个液相传质过程。电极过程涉及电极/溶液之间电荷的传递,即在界面上必然发生电极反应。电极反应速度决定于金属溶解的快慢和腐蚀电流的大小。因而我们要弄清影响电极反应速度亦即金属电化学腐蚀速度的各种因素和变化规律,从而提出控制反应
6、速度的有效措施。金属电化学腐蚀过程中所发生的极化作用和去极化作用是影响金属腐蚀速度的主要因素。由于电流流过而引起腐蚀电池两电极间电位差减小的现象称为电池的极化,阳极电位向正的方向移动的现象称为阳极极化,阴极电位向负的方向移动的现象称为阴极极化。腐蚀电池极化可使腐蚀电流强度减少,从而降低了金属的腐蚀速度。如果没有极化现象发生,电化学的腐蚀速度要比实际观察到的快几十倍甚至几百倍3。所以从电化学保护的观点看,极化作用是非常有利的,探讨产生极化作用的原因及其影响因素,对研究金属腐蚀与防护具有十分重要的意义。产生极化的原因(1)活化极化在腐蚀电池中,金属失去的电子通过金属(或导线)可非常迅速地从阳极流到
7、阴极,但金属离子溶解的速度却很慢,这样就引起阳极双电层上负荷减少,过多的正电荷积累,结果使阳极电位向正的方向移动,产生阳极极化。由于这一原因引起阳极过程阻滞产生的极化称为活化极化,又称电化学极化。(2)浓差极化阳极过程中产生的水化金属离子首先进入阳极表面附近的溶液中,若水化金属离子向外扩散得很慢,就会使阳极附近的液层中金属离子的浓度逐渐增加,阻碍了金属的继续溶解,引起阳极过程阻滞,必然使阳极电位往正的方向移动,产生阳极极化,由此引起的极化称为浓差极化。(3)电阻极化某些金属在一定条件下有阳极电流流过时易在表面生成致密的保护膜,使得金属的溶解速度显著降低,电极过程受到阻滞,阳极电位剧烈地向正的方
8、向移动4。由于保护膜的形成,使电池系统的电阻也随着增加,故由此引起的极化称为电阻极化。极化曲线图如图2-9所示,用控制电流的方法就可测出不同电流下的电极电位。当可变电阻很大时,外电路流过很小的电流,然后减小可变电阻,外电路电流逐渐增大,这时观察到伏特表上电压的读数减小。当外电路电阻降至最小值,接近电池短路状态时,通过的电流量大,伏特表上的电压最小,这说明通过两个电极的电流愈大,它们的极化愈严重,于是两极间的电位差愈小5。电极的去极化作用凡是能消除或减少极化作用的电极过程叫做去极化。阳极发生的去极化作用称为阳极去极化;阴极发生的去极化作用称为阴极去极化。能阻止极化过程进行的物质称为去极化剂。很显
9、然,去极化的电极过程将大大加快金属的腐蚀速度。所以从防止或减少金属电化学腐蚀的角度出发,不希望有去极化的电极过程产生。为了控制这一过程的进行,需要研究产生去极化作用的原因,以便采取相应的控制措施。1. 阳极去极化的原因(1)由于阳极保护膜遭到破坏,如不锈钢在硝酸中生成一层氧化物保护膜,从而发生阳极极化。若在溶液中加入氧离子,就会破坏这层保护膜,使不锈钢的腐蚀速度大为增加6。(2)溶解的金属离子加速离开阳极表面,如铜在氨水或铵盐溶液中能生成铜铵络离子Cu(NH3)42+,使阳极表面附近的液层中铜离子浓度降低,金属的腐蚀加快。2. 阴极去极化的原因(1)去极化剂容易到达阴极表面,或阴极表面的反应产
10、物向外扩散速度快,就会发生阴极去极化作用,如搅拌溶液可加快阴极反应的进行。(2)所有能在阴极获得电子的过程都可以产生阴极去极化作用。其中以氢离子的去极化作用和氧去极化作用最为重要。金属电化学腐蚀的热力学条件:(1)金属溶解的氧化反应要不断地进行,金属的实际电位EA必须维持在比金属的平衡电极电位Ee, M更正的数值上,即EAEe, M 。(2)去极剂从金属上取走电子的去极化反应要持续不断地进行,金属的电极电位必须维持在比去极剂的氧化还原电位更负的数值上,即EKEe, K。金属电化学腐蚀历程包括金属溶解和去极化两个共扼的电极反应,电化学腐蚀要持续地进行,以上两个条件必须同时满足,也就是说金属的电位
11、值必须维持在既比Ee.,M正而又比Ee, K负的数值上,即Ee.ME Ee, K 。换句话说,金属自发地产生电化学腐蚀的条件必须是溶液中含有能从金属上夺走电子的去极剂,并且去极剂的氧化还原电位要比金属溶解反应的平衡电位更正7。金属腐蚀图(E-pH图)8大多数金属腐蚀的过程是电化学过程,其实质是发生了氧化还原反应。氧化还原反应与电解质溶液的酸碱性有关,而很多电极反应的电极电位又是随着pH值而变化的,这就存在着一种可能性,即根据腐蚀介质电解质溶液的pH值、离子浓度(严格说是活度)与电极反应的电极电位值的相互关系来判断电极反应的方向和反应的产物。EpH图,即以电极电位为纵坐标,以介质的pH值为横坐标
12、,就所研究体系的各种化学反应或电化学反应的平衡值而作出曲线图。E一pH图反映了在腐蚀体系中所发生的化学反应与电化学反应处于平衡状态时的电位、pH值和离子浓度的相互关系。析氢腐蚀和耗氧腐蚀氧去极化过程的极化曲线的分析:Ee.O2BC段:当腐蚀介质存在大量氧化剂,或是溶液有强烈搅拌,或是如有大气腐蚀条件下有充分的氧到达阴极表面,这样是氧的离子化超电压起控制作用。 Ee.O2PFSN段:当阴极的电流密度接近扩散电流密度时,氧的扩散超电压 SQG段:是析氢反应和耗氧反应同时作用线。Ee. H M段:是氢的阴极析出线。耗氧腐蚀的特点(1)腐蚀过程的控制步骤随金属在溶液中的腐蚀电位而异当腐蚀金属的阳极处于
13、活性溶解状态,则耗氧腐蚀是阴极过程起控制作用的腐蚀体系。 (2)在氧的扩散控制情况下,腐蚀速度与金属本身的性质关系不大。(3)溶液的含氧量对腐蚀速度影响很大溶液内氧含量高,则氧的平衡电位和极限扩散电流都高,从而使腐蚀加速。 影响金属电化学腐蚀的因素9内在因素的影响1.金属元素的化学性质不同金属的化学活泼性不同,腐蚀速度也不同。般来说,化学活泼性低的金属,如贵金属Pt、Ag、Au等因化学稳定性好,具有良好的耐腐蚀能力。而化学活泼性高的金属,如Li、Na、K等耐腐蚀性极差。但也有一些金属,如Al,化学活泼性虽高,但因表面容易生成层致密的氧化物保护膜,所以亦有良好的耐腐蚀性能。总的说来。容易生成保护
14、膜的金属,耐蚀性与保护膜的性质有关;不易生成保护膜的金属,耐蚀性与本身的热力学稳定性,即标准电极电位有关。2.合金的成分和组织的影响合金的耐蚀性受合金元素含量的直接影响。单相固溶体合金的耐蚀性与合金元素的含量之间有一种特殊的关系。固溶体如由两种元索组成,一种组分对某种溶液稳定,另一种组分不稳定,则合金的耐蚀性随稳定组分达一定含量时有含阶式的增加,并不是随稳定金属组分的含量增加而逐渐增加。在两相或多相合金中,因不同的相有不同的电位,当合金与电解质溶液作用时,合金表面形成腐蚀电池,所以通常比单相合金容易腐蚀,各组织之间的电位差愈大,腐蚀的可能性愈大。3.金属变形和应力的影响金属结构在制造和安装过程
15、中,金属由于受到冷热加工而变形,伴随有内应力产生,在使用中同时承受外载荷。在应力集中处和变形处不仅腐蚀过程加速,而且在许多场合下还可能产生晶间腐蚀或应力腐蚀破坏。4.金属表面状态的影响在大多数的情况下,表面粗加工零件的腐蚀速度比精加工的零件大,这是因为:(1)粗糙金属表面深沟部分氧的到达比较困难,结果成为阳极,表面部位成为阴极,形成氧的浓差腐蚀电池。(2)精加工表面的保护膜比粗加工表面的膜致密均匀,故有较大的保护作用。外界因素的影响1.电解质溶液pH值的影响电解质溶液中的pH值对金属腐蚀的电极过程有较大影响。不管金属发生氢去极化腐蚀或氧去极化腐蚀,溶液中的pH值降低,将会使氢电极和氧电极的电位
16、变正,这样必然会使腐蚀电池的阴极过程更容易进行,引起腐蚀的速度加快。2.溶液的成分及浓度的影响在中性盐溶液中,腐蚀速度与腐蚀产物的溶解度有关。在金属表面的阳极或阴极部分如生成不溶性物质,就会大大降低腐蚀速度,如Na和K的碳酸盐、磷酸盐溶液中,铁的阳极部分能生成难溶性碳酸铁、磷酸铁薄膜,增大了阳极的极化率。硫酸锌溶液能在铁表面阴极部分生成不溶性的氢氧化锌。所以铁与这些盐溶液接触,都会大大降低腐蚀速度。腐蚀速度还与溶液中的盐浓度有关。多数金属的腐蚀速度随着盐浓度的增加而加快。当浓度进一步增加时,腐蚀速度又逐渐减小,这是因为电解质溶液中氧的溶解度随盐浓度的增加而逐渐降低,去极化作用减小,所以腐蚀速度
17、减慢。3.溶液温度的影响大多数金属的腐蚀速度随温度的升高而加大,这是因为温度升高,溶液中的离子迁移速度加快,加速了阴极过程的进行。但在吸氧腐蚀过程中,氧在80以上溶解度急剧减少,腐蚀速度可能减慢。4.腐蚀介质流速的影响在含有空气但不含大量活性离子的稀溶液中(如中性天然水),溶液运动速度对金属腐蚀速度的影响如图所示。起初当流速不高时,随着流速的增加,腐蚀速度显著增加,这是由于溶解氧到达阴极表面的数量增加;当流速相当大时出现了腐蚀速度的降低,这是由于有足够的氧使金属表面钝化形成了保护膜;流速很大时,强烈地冲击作用破坏了保护膜又使腐蚀速度加快。5. 外力作用对腐蚀过程的影响许多金属结构和零部件是在遭
18、受腐蚀介质浸蚀的情况下,同时承受外载荷的机械作用,因而使金属的腐蚀破坏行为复杂化。船舶及海洋工程结构物正是在这样的条件下服役的。研究应力与环境共同作用下的腐蚀破坏很有意义。在这种条件下员常见的破坏形式是“应力腐蚀开裂”和“腐蚀菠劳”。10(1)应力腐蚀开裂 金属结构在拉应力或残余应力和特定腐蚀介质联合作用下发生的脆性破坏称为应力腐蚀开裂。(2)腐蚀疲劳 金属受到交变循环应力和腐蚀介质的联合作用时发生的脆性断裂称为腐蚀疲劳。船舶螺旋桨、尾轴、透平叶片、化工泵的泵轴等都可能发生腐蚀疲劳断裂。参考文献:1金属的局部腐蚀: 点腐蚀 缝隙腐蚀 晶间腐蚀 成分选择性腐蚀M. 化学工业出版社, 1997.2
19、金属腐蚀学M. 冶金工业出版社, 1999.3永昌. 金属腐蚀与防护原理M. 上海交通大学出版社, 1989.4麦群, 阿丽. 金属的腐蚀与防护M. 国防工业出版社, 2002.5赵慧萍, 赵文娟, 张晓芳. 金属电化学腐蚀与防腐浅析J. 化学工程与装备, 2013, 10期.6李润生. 金属腐蚀与防护J. 表面工程资讯, 2010, 04期:49-49.7葛红花, 汪洋, 周国定,等. 普及金属腐蚀与防护知识重要性的研究J. 上海电力学院学报, 2007, 23:61-64. DOI:doi:10.3969/j.issn.1006-4729.2007.01.016.8蒋忠锦. 电位-pH图在金属腐蚀与防护中的应用J. 材料保护, 1988, 01期.9龙玉琴. 解读金属腐蚀与防护J. 试题与研究:教学论坛, 2010:49-49.10曹楚南. 金属腐蚀与防护机理的研究J. 中国科学基金, 1990, 04期:6-11.专心-专注-专业
限制150内