高考专题训练专题复习——求轨迹方程人教版(共9页).doc





《高考专题训练专题复习——求轨迹方程人教版(共9页).doc》由会员分享,可在线阅读,更多相关《高考专题训练专题复习——求轨迹方程人教版(共9页).doc(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上专题复习求轨迹方程一. 本周教学内容: 专题复习求轨迹方程(一)求轨迹方程的一般方法: 1. 待定系数法:如果动点P的运动规律合乎我们已知的某种曲线(如圆、椭圆、双曲线、抛物线)的定义,则可先设出轨迹方程,再根据已知条件,待定方程中的常数,即可得到轨迹方程,也有人将此方法称为定义法。 2. 直译法:如果动点P的运动规律是否合乎我们熟知的某些曲线的定义难以判断,但点P满足的等量关系易于建立,则可以先表示出点P所满足的几何上的等量关系,再用点P的坐标(x,y)表示该等量关系式,即可得到轨迹方程。 3. 参数法:如果采用直译法求轨迹方程难以奏效,则可寻求引发动点P运动的某个
2、几何量t,以此量作为参变数,分别建立P点坐标x,y与该参数t的函数关系xf(t),yg(t),进而通过消参化为轨迹的普通方程F(x,y)0。 4. 代入法(相关点法):如果动点P的运动是由另外某一点P的运动引发的,而该点的运动规律已知,(该点坐标满足某已知曲线方程),则可以设出P(x,y),用(x,y)表示出相关点P的坐标,然后把P的坐标代入已知曲线方程,即可得到动点P的轨迹方程。(二)求轨迹方程的注意事项: 1. 求轨迹方程的关键是在纷繁复杂的运动变化中,发现动点P的运动规律,即P点满足的等量关系,因此要学会动中求静,变中求不变。 来表示,若要判断轨迹方程表示何种曲线,则往往需将参数方程化为
3、普通方程。 3. 求出轨迹方程后,应注意检验其是否符合题意,既要检验是否增解,(即以该方程的某些解为坐标的点不在轨迹上),又要检验是否丢解。(即轨迹上的某些点未能用所求的方程表示),出现增解则要舍去,出现丢解,则需补充。检验方法:研究运动中的特殊情形或极端情形。【典型例题】 例1. 轨迹方程。 分析:题中涉及了三个点A、B、M,其中A为定点,而B、M为动点,且点B的运动是有规律的,显然M的运动是由B的运动而引发的,可见M、B为相关点,故采用相关点法求动点M的轨迹方程。 解:设动点M的坐标为(x,y),而设B点坐标为(x0,y0) 则由M为线段AB中点,可得 即点B坐标可表为(2x2a,2y)
4、例2. 点A的轨迹方程。 分析:先画出示意图,如图所示:根据已知条件:动椭圆过M(1,2)且以y轴为其准线,可见该椭圆位于y轴右侧,注意到点M在椭圆上,故联想到椭圆的几何性质:椭圆上任一点到焦点的距离与到相应准线的距离之比等于离心率。即可发现间接涉及动顶点A的等量关系。只需用A的坐标先表示出左焦点F的坐标,即可列出轨迹方程。 解: 又M在椭圆上, 例3. 过点P(2,4)作两条互相垂直的直线l1,l2,若l1交x轴于A点,l2交y轴于B点,求线段AB的中点M的轨迹方程。 分析1:设M(x,y),由已知l1l2,联想到两直线垂直的充要条件:k1k21,即可列出轨迹方程,关键是如何用M点坐标表示A
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考 专题 训练 复习 轨迹 方程 人教版

限制150内