高中数学异面直线夹角自编(共13页).doc
《高中数学异面直线夹角自编(共13页).doc》由会员分享,可在线阅读,更多相关《高中数学异面直线夹角自编(共13页).doc(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上浅谈异面直线所成的角 专心-专注-专业异面直线所成角的求法求异面直线夹角主要有三种主要方法,一是几何法,二是矢量法,三是公式法。一、几何法:几何法求异面直线所成角的思路是:通过平移把空间两异面直线转化为同一平面内的相交直线,进而利用平面几何知识求解。基本思路是选择合适的点,平移异面直线中的一条或两条成为相交直线,这里的点通常选择特殊位置的点。常见三种平移方法:直接平移:中位线平移(尤其是图中出现了中点):补形平移法:“补形法”是立体几何中一种常见的方法,通过补形,可将问题转化为易于研究的几何体来处理,利用“补形法”找两异面直线所成的角也是常用的方法之一。例:长方体AB
2、CDA1B1C1D1中,若AB=BC=3,AA1=4,求异面直线B1D与BC1所成角的大小。直接平移:常见的利用其中一个直线a和另一个直线b上的一个已知点,构成一个平面,在此平面内做直线a的平行线。解法一:如图,过B1点作BEBC1交CB的延长线于E点。则DB1E就是异面直线DB1与BC1所成角,连结DE交AB于M,DE=2DM=3,DB1E= DB1E=。解法二:如图,在平面D1DBB1中过B点作BEDB1交D1B1的延长线于E,则C1BE就是异面直线DB1与BC1所成的角,连结C1E,在B1C1E中,C1B1E=135,C1E=3,C1BE=,C1BE=。课堂思考:1.如图,PA矩形ABC
3、D,已知PA=AB=8,BC=10,求AD与PC所成角的余切值为。ABCD2.在长方体ABCD- A1B1C1D1中,若棱B B1=BC=1,AB=,求D B和AC所成角的余弦值.例2题图【例2】 如图所示,长方体A1B1C1D1-ABCD中,ABA1=45,A1AD1=60,求异面直线A1B与AD1所成的角的度数.中位线平移法分析:构造三角形找中位线,然后利用中位线的性质,将异面直线所成的角转化为平面问题,解三角形求之。解法一:如图连结B1C交BC1于0,过0点作OEDB1,则BOE为所求的异面直线DB1与BC1所成的角。连结EB,由已知有B1D=,BC1=5,BE=,BOE= BOE=解法
4、二:如图,连DB、AC交于O点,过O点作OEDB1,过E点作EFC1B,则OEF或其补角就是两异面直线所成的角,过O点作OMDC,连结MF、OF。则OF=,OEF=,异面直线B1D与BC1所成的角为。解法三:如图,连结D1B交DB1于O,连结D1A,则四边形ABC1D1为平行四边形。在平行四边形ABC1D1中过点O作EFBC1交AB、D1C1于E、F,则DOF或其补角就是异面直线DB1与BC1所成的角。在ADF中DF=,DOF=,DOF=。课堂练习1在正四面体ABCD中,已知E是棱BC的中点,求异面直线AE和BD所成角的余弦值。补形法分析:在已知图形外补作一个相同的几何体,以例于找出平行线。解
5、法一:如图,以四边形ABCD为上底补接一个高为4的长方体ABCD-A2B2C2D2,连结D2B,则DB1D2B,C1BD2或其补角就是异面直线DB1与BC1所成的角,连C1D2,则C1D2C2为Rt,C1BD2=,异面直线DB1与BC1所成的角是。课堂练习:求异面直线A1C1与BD1所成的角在长方体ABCD-A1B1C1D1的面BC1上补上一个同样大小的长方体,将AC平移到BE,则D1BE或其补角就是异面直线A1C1与BD1所成的角,在BD1E中,BD1=3, 二、矢量法。利用向量,设而不找,对于规则几何体中求异面直线所成的角也是常用的方法之一。常有向量几何法和向量代数法两种。解法一:如图,连
6、结DB、DC1,设异面直线DB1与BC1所成的角为,而=()=+=,+,BB1DD1 ,=,=D1DB1D1DB1= ,=180DB1C1DB1C1= ,=DB1C1=7 =,解法二:如图,建立如图所示的空间直角坐标系,则B(3,3,0),B1(3,3,4),D(0,0,0),C1(3,0,4)。设和的夹角为,则=异面直线与所成的角为。课堂练习:长方体ABCDA1B1C1D1中,AB=AA1=2cm,AD=1cm,求异面直线A1C1与BD1所成的角。向量几何法: 为空间一组基向量所以异面直线A1C1与BD1所成的角为 向量代数法: 以D为坐标原点,DC、DA、DD1分别为x、y、z轴,建立空间
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 直线 夹角 13
限制150内