空间直线与直线的位置关系教案(共3页).doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《空间直线与直线的位置关系教案(共3页).doc》由会员分享,可在线阅读,更多相关《空间直线与直线的位置关系教案(共3页).doc(3页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上142空间直线与直线的位置关系 公理4、等角定理及其应用.(一) 公理4问题1:平面中直线的平行传递性? 问题2: 利用教室内实例寻找空间中直线平行的传递性.公理4:平行于同一直线的两条直线相互平行.公理分析:要证明空间两条直线平行,要找到中间桥梁.(二) 等角定理问题1:初中学习的等角定理?如果两条相交直线与另两条相交直线分别平行,那么这两组相交直线所成角相等或互补.问题2:在空间中,这个定理仍然成立吗? 等角定理:如果两条相交直线与另两条相交直线分别平行,那么这两组相交直线所成的锐角(或直角)相等.注意表述上区别:平面几何合立体几何中某些理论上的不一致应引起学生掌
2、握理论时的重视.(三)例题分析例1:在长方体中,E、F分别为,AD 的中点,求证 :证明:取BC中点G,连结AABBDCBEF 例例3 在长方体中,求证:.ABBDCBAB证明:, ,是锐角,.(四)、问题拓展1、空间四边形空间四边形相关知识复习:在空间四边形ABCD中,E、H分别为AB、AD中点,F、G为CB、CD三等分点,且.求证:EF,HG,AC 三线共点.说明复习公理1、2 ,对于空间四边形这一立体几何内的新事物,进行回顾和整理,为下一步更好学习做好准备.例4 已知E、F、G、H分别是空间四边形ABCD各边中点.(1) 判断四边形EFGH 形状;(答:平行四边形.通过公理4)(2) 若
3、空间四边形中对角线AC=BD,判断四边形EFGH 形状;(答:菱形.平行四边形对角线相互垂直)(3) 四边形EFGH什么情况下为矩形?(答:对角线相互垂直,即)(4) 结合(2)、(3),可得正方形EFGH(5) 第(2)、(3)、(4)题的逆命题是否成立?该如何求证?如(2) 若四边形EFGH中,则AC=BD(6) 若E、H分别为AB、AD中点,F、G为CB、CD三等分点,且,判断四边形EFGH 形状.(梯形EFGH)证明:E、H分别为AB、AD中点梯形EFGH 说明 这是空间两条直线平行公理4的典型应用,加以推测、证明的重要应用.2、对于平面图形的结论:有些可推广到立几图形并有完全相同的结论;有些在立几图形中有相似的结论,但不完全相同;有些在立几中则有完全不同的结论.专心-专注-专业
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 空间 直线 位置 关系 教案
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内