证明积分不等式的若干方法(共4页).doc
《证明积分不等式的若干方法(共4页).doc》由会员分享,可在线阅读,更多相关《证明积分不等式的若干方法(共4页).doc(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上证明积分不等式的若干方法 摘 要 针对高等数学中的关于积分不等式的证明题我们可以运用拉格朗日微分中值定理、柯西-施瓦茨不等式、黎曼积分性质、分部积分法和二重积分性质等的方法来证明. 关键词 积分不等式; 微分中值定理; 柯西施瓦茨不等式; 黎曼积分性质; 泰勒公式 中图分类号: C35 文献标识码: A 1 引言 积分不等是的证明是大学高等数学学习中的一个难点,也是理工科研究生入学考试中常出现的一类题型.证明定积分不等式的问题中难度较大,技巧性较高,涉及知识面较广,大多数同学感到无从下手,本文结合若干题型例题给出了一些证明积分不等式的方法以供大家参考. 2 预备知识
2、定理2.1(拉格朗日(Lagrange)中值定理)若函数满足如下条件: (1)在闭区间上连续; (2)在开区间内可导, 则在内至少存在一点,使得 定理2.2 (积分中值定理)若在上连续,则至少存在一点,使得 定理2.3(黎曼积分性质)设为上的可积函数.若,则 定理2.4(柯西施瓦茨(Schwarz)不等式)若和在上可积,则 定理2.5(二重积分性质(保号性)若与在上可积,且 则 3 积分不等式的各种证法 3.1 利用中值定理证明积分不等式 当被积函数在闭区间上连续,并在闭区间内可导时,对拉格朗日中值定理和积分中值定理中带的项作适当的变化,可证得某些积分不等式. 例题1 设在上连续且递减, 求证
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 证明 积分 不等式 若干 方法
限制150内