圆锥曲线(求轨迹方程)汇总(共7页).doc
《圆锥曲线(求轨迹方程)汇总(共7页).doc》由会员分享,可在线阅读,更多相关《圆锥曲线(求轨迹方程)汇总(共7页).doc(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上专题 圆锥曲线(求轨迹方程)求轨迹方程的常用方法(1)直接法:直接利用条件建立x,y之间的关系或F(x,y)0;(2)定义法:先根据条件得出动点的轨迹是某种已知曲线,再由曲线的定义直接写出动点的轨迹方程;(3)代入转移法(相关点法):动点P(x,y)依赖于另一动点Q(x0,y0)的变化而变化,并且Q(x0,y0)又在某已知曲线上,则可先用x,y的代数式表示x0,y0,再将x0,y0代入已知曲线得要求的轨迹方程1一个区别“轨迹方程”与“轨迹”“求动点的轨迹方程”和“求动点的轨迹”是不同的前者只须求出轨迹的方程,标出变量x,y的范围;后者除求出方程外,还应指出方程的曲线的
2、图形,并说明图形的形状、位置、大小等有关的数据2双向检验求轨迹方程的注意点求轨迹方程,要注意曲线上的点与方程的解是一一对应关系,检验应从两个方面进行:一是方程的化简是否是同解变形;二是是否符合实际意义,注意轨迹上特殊点对轨迹的“完备性与纯粹性”的影响考向一 直接法求轨迹方程【例1】已知动点P(x,y)与两定点M(1,0),N(1,0)连线的斜率之积等于常数(0)(1)求动点P的轨迹C的方程; (2)试根据的取值情况讨论轨迹C的形状【解】(1)由题意可知,直线PM与PN的斜率均存在且均不为零,所以kPMkPN,整理得x21(0,x1)即动点P的轨迹C的方程为x21(0,x1)(2)当0时,轨迹C
3、为中心在原点,焦点在x轴上的双曲线(除去顶点);当10时,轨迹C为中心在原点,焦点在x轴上的椭圆(除去长轴的两个端点);当1时,轨迹C为以原点为圆心,1为半径的圆除去点(1,0),(1,0)当1时,轨迹C为中心在原点,焦点在y轴上的椭圆(除去短轴的两个端点)【对点练习1】已知A,B为平面内两定点,过该平面内动点M作直线AB的垂线,垂足为N.若2,其中为常数,则动点M的轨迹不可能是()A圆B椭圆C抛物线D双曲线【解析】以AB所在直线为x轴,AB的中垂线为y轴,建立坐标系,设M(x,y),A(a,0),B(a,0),则N(x,0)因为2,所以y2(xa)(ax),即x2y2a2,当1时,是圆的轨迹
4、方程;当0且1时,是椭圆的轨迹方程;当0时,是双曲线的轨迹方程;当0时,是直线的轨迹方程综上,方程不表示抛物线的方程【答案】C考向二 定义法求轨迹方程【例2】已知两个定圆O1和O2,它们的半径分别是1和2,且|O1O2|4.动圆M与圆O1内切,又与圆O2外切,建立适当的坐标系,求动圆圆心M的轨迹方程,并说明轨迹是何种曲线【解】如图所示,以O1O2的中点O为原点,O1O2所在直线为x轴建立平面直角坐标系由|O1O2|4,得O1(2,0),O2(2,0)设动圆M的半径为r,则由动圆M与圆O1内切,有|MO1|r1;由动圆M与圆O2外切,有|MO2|r2.|MO2|MO1|3.点M的轨迹是以O1,O
5、2为焦点,实轴长为3的双曲线的左支a,c2,b2c2a2.点M的轨迹方程为1.图881【对点练习2】如图881所示,已知圆A:(x2)2y21与点B(2,0),分别求出满足下列条件的动点P的轨迹方程(1)PAB的周长为10;(2)圆P与圆A外切,且过B点(P为动圆圆心);(3)圆P与圆A外切,且与直线x1相切(P为动圆圆心)【解】(1)根据题意,知|PA|PB|AB|10,即|PA|PB|64|AB|,故P点轨迹是椭圆,且2a6,2c4,即a3,c2,b.因此其轨迹方程为1(y0)(2)设圆P的半径为r,则|PA|r1,|PB|r,因此|PA|PB|1.由双曲线的定义知,P点的轨迹为双曲线的右
6、支,且2a1,2c4,即a,c2,b,因此其轨迹方程为4x2y21.(3)依题意,知动点P到定点A的距离等于到定直线x2的距离,故其轨迹为抛物线,且开口向左,p4. 因此其轨迹方程为y28x.图882考向三 代入法(相关点法)求轨迹方程【例3】如图882所示,设P是圆x2y225上的动点,点D是P在x轴上的投影,M为PD上一点,且|MD|PD|.(1)当P在圆上运动时,求点M的轨迹C的方程;(2)求过点(3,0)且斜率为的直线被C所截线段的长度【解】(1)设M的坐标为(x,y),P的坐标为(xP,yP),由已知得P在圆上,x2225,即C的方程为1.(2)过点(3,0)且斜率为的直线方程为y(
7、x3),设直线与C的交点为A(x1,y1),B(x2,y2),将直线方程y(x3)代入C的方程,得1,即x23x80.x1,x2.线段AB的长度为|AB|.图885【对点练习2】(2014合肥模拟)如图885所示,以原点O为圆心的两个同心圆的半径分别为3和1,过原点O的射线交大圆于点P,交小圆于点Q,P在y轴上的射影为M.动点N满足且0.(1)求点N的轨迹方程;(2)过点A(0,3)作斜率分别为k1,k2的直线l1,l2与点N的轨迹分别交于E,F两点,k1k29.求证:直线EF过定点【解】(1)由且0可知N,P,M三点共线且PMQN.过点Q作QNPM,垂足为N,设N(x,y),|OP|3,|O
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 圆锥曲线 轨迹 方程 汇总
限制150内