合成氨变换工段工艺中变串低变换热设计(共27页).doc
《合成氨变换工段工艺中变串低变换热设计(共27页).doc》由会员分享,可在线阅读,更多相关《合成氨变换工段工艺中变串低变换热设计(共27页).doc(27页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上酒 泉 职 业 技 术 学 院毕 业 设 计2009级应用化工生产技术专业题 目:合 成 氨 变 换 工 段 中 变 串 低 变 工 艺 换 热 设 计 时 间:2012 年 6 月 学 生 姓 名:杨 丽 娟 指 导 教 师:李 发 达 班 级:2009级应用化工生产技术(4)班 2011年1月29日 酒泉职业技术学院 2012 届各专业 毕业论文(设计)成绩评定表姓名杨丽娟班级09应化(4)班专业应用化工生产技术指导教师第一次指导意见指导教师第二次指导意见指导教师第三次指导意见指导教师评语及评分 成绩: 签字(盖章) 年 月 日答辩小组评价意见及评分成绩: 签字(
2、盖章) 年 月 日教学系毕业实践环节指导小组意见签字(盖章) 年 月 日学院毕业实践环节指导委员会审核意见签字(盖章) 年 月 日说明:1、以上各栏必须按要求逐项填写。2、此表附于毕业论文 (设计)封面之后。摘 要 换热器是实现化工生产过程中热量交换和传递不可缺少的设备。热量交换中常有一些腐蚀性、氧化性很强的物料,因此,要求制造在换热器的材料具有抗强腐蚀性能。换热器的分类比较广泛:反应釜、压力容器冷凝器、反应锅、螺旋板式换热器、波纹管换热器、列管换热器、板式换热器、螺旋板换热器、管壳式换热器、容积式换热器、浮头式换热器、管式换热器、热管换热器、汽水换热器、换热机组、石墨换热器空气换热器、钛换热
3、器。在合成氨生产过程中,换热器应用十分广泛,主要用于热量的交换和回收。变换工段中主要涉及一氧化碳的转化和能量的回收利用,列管换热器在传热效率,紧凑性和金属耗量不及某些换热器,但它具有结构简单,坚固耐用,适用性强,制造材料广泛等独特优点,因而,在合成氨变换工段选择列管式换热器,而本设计主要对该换热器进行相关选型和计算。关键词 换热器,变换,设计第一章 绪论1.1合成氨技术进展综述氨是最为重要的基础化工产品之一,其产量居各化工产品首位;同时也是能源消耗的大户,世界上大约有10%的能源用于生产合成氨。氨主要用于农业,合成氨是氮肥工业的基础,氨本身是重要的氮素肥料,其他氮素肥料也大多是先合成氨,再加工
4、程尿素或各种铵盐肥料,这部分约占70%的比例,称之为“化肥氨”;同时氨也是重要的无机化学和有机化学工业基础原料,用于生产铵、胺、染料、炸药、制药、合成纤维、合成树脂的原料,这部分约占30%的比例,称之为“工业氨”。未来合成氨技术进展的主要趋势是“大型化、低能耗、结构调整、清洁生产、长周期运行”。1.1.1 世界合成氨技术现状及进展自20世纪20年代第一套合成氨工业投产以来,尽管合成氨生产的基本原理未变,但在合成气制备、合成气净化、氨合成等工艺单元,均取得了重大的技术进步,实现了不少单元技术的革新,以至全流程的更新,使装置规模不断扩大,能量消耗逐步接近理论值。与此同时,在天然气、重油和煤等制氨原
5、料中,由于天然气具有投资省、能耗低的明显经济性优势,使世界上约有85%的装置以天然气为原料。因此合成氨技术的发展主要体现在天然气制氨的技术进步中。20世纪60年代中期,美国凯洛格公司首先开发出以天然气为原料、日产1000吨的大型合成氨技术,其装置在美国投产后每吨氨能耗达到42.0吉焦的先进水平。凯洛格传统合成氨工艺首次在合成氨装置中,采用了离心式压缩机,并将装置中工艺系统与动力系统与动力系统非有机结合起来,实现了装置的单系列大型化(无并行装置)和系统能量自我平衡(即无能量输入),是传统型制氨工艺的最显著特征。称为合成氨工艺的“经典之作”。之后ICI-Uhde、Topsoe、Braun公司等相继
6、开发出与凯洛格工艺技术,其中Topsoe和ICI在以清幽为原料的制氨技术方面,处于世界领先地位。这是合成氨工业史上的第一次技术变革和飞跃。1.1.2 我国合成氨技术的基本状况我国氮肥工业自20世纪5年代以来,不断发展壮大,目前合成氨产量已跃居世界第一位,现已掌握了以焦煤、无烟煤、焦炉气、天然气及油田伴生气和液态烃多种原料生产合成氨、尿素的技术,形成了特有的煤、石油、天然气原料并存和大、中、小生产规模并存的生产格局。目前合成氨总生产能力为4500万t/a左右,氮肥工业已基本满足了国内需求,在与国际接轨后,具备与国际合成氨产品竞争的能力今后的发展重点是调整原料和产品结构,进一步盖上经济性。我国目前
7、有大型合成氨装置共计34套,生产能力约1000万t/a;其下游产品除1套装置生产硝酸磷肥之外,均为尿素。按照原料类型分:以天然气(油田气)为原料的17套,以轻油为原料的6套,以重油为原料的9套,以煤为原料的2套。除上海吴泾化工厂为国产化装置外其他均系从国外引进。1.2 合成氨技术未来的发展趋势根据合成氨技术发展的情况分析,估计未来合成氨的基本生产原理将不会出现原则性地改变,其技术发展将会继续紧密围绕“降低生产成本、提高运行周期,改善经济性”的基本目标,进一步集中在“大型化、低能耗、结构调整、清洁生产、长周期运行”等方面进行技术的研究开发。1.2.1 合成氨装置的发展方向大型化、集成化、自动化,
8、形成经济规模的生产中心、低能耗与环境更友好降是未来合成氨装置的主流发展方向。单系列合成氨装置生产能力将从2000t/d提高到40005000t/d;以天然气为原料制氨吨氨能耗已经接近了理论水平,今后难以有较大幅度的降低,但以油、煤为原料制氨,降低能耗还能有所作为。天然气自热转化技术和非催化部分氧化技术将会在合成气制备工艺的大型化方面发挥重要作用。以低温甲醇洗、低温液氮洗为代表的低温净化工艺,有可能在合成气净化大型化中得以应用。以Uhde公司的“双压法氨合成工艺”和Kellogg公司的基于催化剂KAAP工艺“,将会在合成氨工艺的大型化方面发挥重要的作用。针对大型化的合成气压缩机正在开发之中,以适
9、用于未来产量可能达到30005000t/d甚至更高的装置。1.2.2 原料结构和产品结构的调整以“油改气”和“油改煤”为核心的原料结构调整和以“多联产和在加工”为核心的产品结构调整,是合成氨装置“改善经济性、增强竞争力”的有效途径。全球原油供应处于递减模式,正处于总递减曲线的中点,2010年原油出现了自然短缺。石油时代将逐步转入煤炭(气体)时代,原油的加工产品轻油、渣油的价格也随之持续升高。目前以轻油和渣油为原料的制氨装置在市场经济条件下,已经不具备生存的基础,以“油改气”和“油改煤”为核心的原料结构调整势在必行;借氮肥装置原料结构的调整之机,及时调整产品结构,联产氢气及多种C1化工产品亦是装
10、置改善经济性的有效途径。1.2.3 实施与环境友好的清洁生产实施与环境友好的清洁生产是未来合成氨装置的必然和唯一的选择。生产过程中不生成或很少生成副产物、废物,实现或接近“零排放“的清洁生产技术日趋成熟和不断完善。1.2.4 提高生产运转的可靠性,延长运行周期提高生产运转的可靠性,延长运行周期是未来合成氨装置“改善经济性、增强竞争力”的必要保证。有利于“提高装置生产运转率、延长运行周期”的技术,包括工艺优化技术、先进控制技术等将越来越受到重视。第二章 工艺过程设计概述2.1合成氨的生产过程20世纪初,德国物理化学家哈勃(F.Haber)成功的采用化学合成的方法,将氢氮气通过催化剂的作用,在高温
11、高压下制取氨。为了与其他制氨方法相区别,将这种直接合成的产物称为“合成氨”。目前工业上生产氨的方法几乎全部都采用氢氮气直接合成法,但合成氨的名称一直沿用至今。2.1.1氨的性质合成氨别名:氨气。分子式NH3,英文名:synthetic ammonia。世界上的氨除少量从焦炉气中回收副产物外,绝大部分是合成的氨。氨在常温、常压下为无色气体,比空气轻,具有特殊的刺激性臭味,较易液化。当温度250C、压力1MPa时,气态氨可液化为无色的液氨。氨气易溶于水,溶解时放出大量的热。液氨或干燥的氨气对大部分物质不腐蚀,在有水存在时,对铜、银、锌等金属有腐蚀。氨是一种可燃性气体,自燃点为6300C,故一般较难
12、点燃。2.1.2氨的用途合成氨主要用作化肥、冷冻剂和化工原料。合成氨生产,首先必须制取含氢和氮的原料气。氮气来源于空气,可以在低温下将空气液化,分离而得;也可在制氢过程中加入空气,直接利用其中的氮。合成氨生产大多采用后一种方式提供氮。氢气的主要来源是水和碳氢化合物中的氢元素,以及含氢的工业气体。2.1.3氨合成的原料合成氨生产常用的原料包括:焦碳、煤、焦炉气、天然气、石脑油和重油。不论以固体、液体或气体为原料,所得到的合成氨原料气中均含有一氧化碳。固体燃料气化所得半水煤气中的一氧化碳含量为28%30%,烃类蒸汽转化为12%13%,焦炉转化气为11%15%,重油部分氧化为44%48%。一氧化碳的
13、清除一般分为两次。大部分一氧化碳,先通过变换反应,即在催化剂存在的条件下,一氧化碳与水蒸气作用生成氢气和二氧化碳。通过变换反应,既能把一氧化碳变为易于清除的二氧化碳,同时,又可制得与反应了的一氧化碳相等摩尔的氢,而所消耗的只是廉价的水蒸气。因此,一氧化碳的变换既是原料气的净化过程,又是原料气制造的继续。最后,残余的一氧化碳再通过铜氨液洗涤法、液氮洗涤法或甲烷化法等方法加以清除。2.2工艺原理一氧化碳是氨合成反应的毒物,在原料气中含量为13%30%,一氧化碳变换主反应为:CO + H2O = CO2 + H2 +Q (1-1)通过上述反应,CO转化为较易被消除的CO2并获得宝贵的H2,因而一氧化
14、碳变换既是气体的净化过程,又是原料气制取的继续。最后,少量的CO再通过其他净化法加以脱除。此外,一氧化碳与氢之间还可发生下列反应:C O + H2 = C + H2O (1-2)CO + 3H2 = CH4 + H2O (1-3)但是,由于变换所用催化剂对反应式(1-1)具有良好的选择性,从而抑制了其他副反应的发生。变换过程中还包括下列反应式:2H2 + O2 = 2H2O +Q 2.3工艺条件2.3.1温度变换反应存在最佳温度,如果整个反应过程能按最佳温度曲线进行,则反应速率最大,即相同的生产能力下所需催化剂用量最少。但是实际生产中完全按最佳温度曲线操作是不现实的。首先,在反应初期,x很小,
15、但对应的Tm很高,且已超过了催化剂的耐热温度。而此时,由于远离平衡,反应的推动力大,即使在较低温度下操作仍有较高的反应速率。其次,随着反应的进行,x不断升高,反应热不断放出,床层温度不断提高,而依据最适宜曲线,Tm却要求不断降低。因此,随着反应的进行,应从催化床中不断移出适当的热量,使床层温度符合Tm的要求。生产上控制变换反应温度应遵循如下两条原则。一,应在催化剂的活性温度范围内操作催化床温度;二,入口温度高于催化剂的起始活性温度200C左右,热点温度低于催化剂的耐热温度。在满足工艺条件的前提下,尽量维持低温操作。随着催化剂使用时间的增长,因催化剂活性下降,操作温度应适当提高。催化床温度应尽可
16、能接近最佳温度。为此,必须从催化床中不断移出热量,并且对移出的热量加以合理利用。根据催化床与冷却介质之间的换热方式的不同,移出方式可分为连续换热和多段换热式两大类。对变换发应,由于整个反应过程变换率较大,反映前期与后期单位催化床所需排出的热量想差甚远,故主要采用多段换热式。此类变换炉的特点是反应过程与移热过程分开进行。多段换热式又可分为多段间接换热与多段直接换热。前者是在间壁式换热器中进行的;后者则是在反应器中直接加入冷流体以达到降温的目的,又称冷激式。变换反应可用的冷激介质有;冷原料气,水蒸汽及冷凝水。对于低温过程,由于一氧化碳反应量少,无需从床层移热。其温度控制除了必须在催化剂的活性温度范
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 合成氨 变换 工段 工艺 中变串低 设计 27
限制150内