正定矩阵的判定、性质及其应用(共15页).doc
《正定矩阵的判定、性质及其应用(共15页).doc》由会员分享,可在线阅读,更多相关《正定矩阵的判定、性质及其应用(共15页).doc(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上学校代码: 10722 学号: 分类号: O151.21 密级: 公开 题 目: 正定矩阵的判定、性质及其应用 Discussion on Determinant,Positive and Application of Positive Definite Matrix作 者 姓 名: 专 业 名 称: 学 科 门 类: 指 导 老 师: 提交论文日期: 2014年5月 成 绩 评 定: 专心-专注-专业摘 要 在高等代数的学习中,我们详细学习了二次型的相关知识,并且从中引出了正定矩阵的概念。事实上,正定矩阵是代数中一类非常重要的矩阵,它在不等式证明、极值求解、特征值求
2、解、系统稳定性判定中都有着非常重要的应用。本文首先介绍了实对称矩阵的定义,然后给出了判定正定矩阵的7条定理,接着总结归纳了正定矩阵的相关性质,最后通过举例说明了正定矩阵在证明不等式、判断函数极值等方面的应用。关键词:实对称;正定矩阵;判定;性质Abstract We have studied the concept of quadratic form and the definition of positive-definite matrix is introduced.In fact,positive definite matrix is a kind of very important m
3、atrix in algebra, it can be applied to the value of extreme and eigenvalue,the prove of inequality and stability analysis of system.This paper firstly introduced the definition of real symmetric matrices,and 7 theorems are given to determine positive definite matrix,then the related properties of po
4、sitive definite matrix were summarized, the positive definite matrix in the application of proving inequality,function extreme and so on were illustrated finally.Keywords:properties,determinant,real symmetric, positive-definite matrix.目 录引言在数学学科的研究中具有极其重要的地位的是矩阵,它不仅仅是数学研究的一个分支和高等代数的主要研究对象,而且还是理科研究中不
5、可缺少的具有最实用价值的工具,如系数矩阵和增广矩阵的很多性质都是由线性方程组的部分性质所反映的。 在古代,西尔维斯特为了将数字矩形阵列和行列式区别开来,他便创立了“矩阵”,而后由凯莱第一个明确了“矩阵”这个术语的确切意思。事实上,早在我国古代就已经对矩阵有所研究了。1在公元前1世纪,在九章算术中矩阵形式解方程组已经非常成熟了,但是在那个时代矩阵只是被人们看做是一种解题的方法,而“矩阵”这一概念并没有被独立起来,形成一个统一完整的体系。矩阵在求解线性方程组和行列式计算等问题中得以广泛应用是在18世纪末的时候,并且从那时起矩阵思想才得到进一步的发展。2 矩阵论中正定矩阵有着十分重要的地位。3历史上
6、,在对于二次型和Hermite型的探究中最早出现了对正定矩阵的详细探究。二次齐次多项式是代数研究中另外一种非常重要的多项式,二次齐次多项式在数学的大多数分支中都有重要的应用,而且在解答与物理问题相关的内容中大家也会经常碰到需要运用正定二次型作解。正定二次型在二次型中占有及其特殊的地位,并且由正定二次型的系数可以直接写出正定矩阵。因此,无论是在研究中还是实际的应用中正定二次型和正定矩阵都有重要的意义。4如今,矩阵已经成为了处理有限空间和数量关系的重要的工具。正定矩阵在矩阵的研究中占有十分重要的地位,对于正定矩阵的研究有利于我们日后更加详尽的研究二次型、线性空间和线性变换。 下面我首先介绍正定矩阵
7、的定义。1 正定矩阵的定义1.1 正定二次型的定义定义15:在实二次型中若对于任意一组不全为零的实数都有,则称该二次型为正定的;若,则称为半正定二次型;若,则称为负定二次型;若,则称为半负定二次型;若实二次型既不是半正定又不是半负定的则称为不定二次型。1.2 正定矩阵的定义定义2:若实二次型正定,则称实对称阵正定;若实二次型半正定,则称实对称阵半正定;若实二次型负定,则称实对称阵负定;若实二次型半负定,则称实对称阵半负定;若实二次型不定,则称实对称阵不定。 事实上,正定二次型与元数有关系,例如 当作为二元实二次型时正定(取任何不为零的数即可);但当作为三元实二次型时不正定(取,则结果不满足6
8、)。2 正定矩阵的判定定理17: 元实二次型是正定的充要条件是它的标准形的系数全为正。证: 因为 = 对作合同变换,即取作非线性退化,则实二次型的标准形为 又因为为正定矩阵且正定矩阵作非退化线性替换其正定型不变,即也是正定矩阵。则,即, , ,所以实二次型的标准形的系数全为正。定理28:元实二次型是正定的充要条件是它的正惯性指数为。证:因为是正定的,所以矩阵是正定矩阵,则 那么可化为,且由此可得,正惯性指数为。反之,若该元实二次型的正惯性指数为,且为对称矩阵,根据定理1可得矩阵为正定矩阵。推论:实对称矩阵正定的充要条件是的正惯性指数等于的级数。定理3:阶实对称矩阵是正定的充要条件是二次型的秩与
9、符号差均为。证:必要性 因为是实对称正定矩阵,所以实对称矩阵所对应的实二次型的正惯性指数为、负惯性指数0,从而可得实二次型符号差为。因为矩阵的主对角线上的元素对应元实二次型的系数,又矩阵为正定矩阵,所以正定矩阵的主对角线上的所有数全部大于零,进而可推出正定矩阵的秩为。充分性 因为二次型的秩与符号差均为,所以正惯性指数为,从而由定理2可得矩阵为正定矩阵。定理49:阶实对称矩阵是正定的充要条件是与单位矩阵合同,即存在实可逆矩阵,使的。证:阶实对称矩阵正定的充要条件是元实二次型正定,当且仅当的正惯性指数为,当且仅当与单位矩阵合同。定理5:阶实对称矩阵是正定的充要条件是的顺序主子式证:必要性 设实二次
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 正定 矩阵 判定 性质 及其 应用 15
限制150内