新人教版八年级数学上册第12章轴对称教案(共11页).doc
《新人教版八年级数学上册第12章轴对称教案(共11页).doc》由会员分享,可在线阅读,更多相关《新人教版八年级数学上册第12章轴对称教案(共11页).doc(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上第十三章轴对称第一课时131 轴对称(1)教学目标1.通过丰富的实例认识轴对称图形,并能找出轴对称图形的对称轴 2.了解轴对称图形、两个图形成轴对称这两个概念之间的联系和区别 3.经历丰富材料的学习过程,发展对图形的观察、分析、判断、归纳等能力4.体验数学与生活的联系、发展审美观教学重点:轴对称的有关概念;教学难点:轴对称图形与两个图形关于某条直线对称这两个概念之间的联系与区别教学准备 教师:收集有关轴对称的素材(包括图形、实物、图片等)学生:准备复写纸;收集有关窗花的素材,并要求进行剪纸-双喜字或其他窗花教学设计作品展示,交流体会1作品展示:让部分学生展示课前的剪纸
2、作品(可以将作品粘贴到黑板上);2小组活动: (1)在窗花的制作过程中,你是如何进行剪纸的?为什么要这样?(2)这些窗花(图案)有什么共同的特点?概念形成(一)轴对称图形1在学生充分交流的基础上,教师提出“轴对称图形”的概念,并让学生尝试给它下定义,通过逐步地修正形成“轴对称图形”的定义,同时给出“对称轴”2结合教科书第118页图14.1-1进一步分析轴对称图形的特点,以及对称轴的位置3学生举例:试举几个在现实生活中你所见到的轴对称例子4概念应用:(1)教科书第119页练习;(2)补充:判断下面的图形是不是轴对称图形?并简要说明理由 (二)两个图形关于某条直线对称对于第二个概念的建立,分两个步
3、骤进行:先观察图形,再进行画图其目的是突出两个图形和这两个图形之间的关系,在这个基础上再给出定义,比较合理1观察教科书第119页中的图14.1-3,思考:图中的每对图形有什么共同的特点?2操作:取一张薄纸,先对折,然后中间夹一张复写纸,再在纸上任意画一个图案,取出复写纸后你发现两层纸上的图案有什么关系?3两个图形成轴对称的定义如下图,图形F与图形F就是关于直线l对称,点A与点A是对称的4举例:你能举出一些生活中两个图形成轴对称的例子吗?5练习:教科书第120页辨析概念分组讨论:轴对称图形和两个图形成轴对称这两个概念之间的联系和区别讨论后可列表比较如下:轴对称图形两个图形成轴对称区别一个图形两个
4、图形联系1沿着某条直线对折后,直线两旁的部分都能够互相重合(即直线两旁的两部分全等)2都有对称轴(至少一条)3如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形关于这条直线对称;如果把两个成轴对称的图形看成一个图形,那么这个图形就是轴对称图形实践和应用1下列图形是部分汽车的标志,哪些是轴对称图形?奔驰宝马大众奥迪3下图中的两个图形是否成轴对称?如果是,请找出它的对称轴归纳小结 通过本节课的学习,你有什么收获?布置作业 教科书第60页第1、2题,第65页第6题教学后记: 1本课努力体现数学与生活的联系,让学生能感受到数学就在我们身边同时,学生在这些图案的认识过程中学习新知,应用新知,激发他
5、们学习数学的兴趣2处理好概念教学与能力培养的关系本课先让学生收集图案,然后在学生有了感性认识的基础上提出有关的概念,再让学生把概念运用到实际问题情景中,这样的设计过程有利于学生对数学概念的真正理解,也有利于学生学习能力的提高第二课时13.1 轴对称(2)教学目标 探索并理解对应点所连的线段被对称轴垂直平分的性质 探索并理解线段垂直平分线的两个性质 通过观察、实验、猜测、验证与交流等数学活动,初步形成数学学习的方法 在数学学习的活动中,养成良好的思维品质教学重点:图形轴对称的性质和线段垂直平分线的性质教学难点:由线段垂直平分线的两个性质得出的“点的集合”的描述教学准备 木棒、橡皮筋教学设计提出问
6、题1下面的图形是轴对称图形吗?如果是,请说出它的对称轴 2如果两个图形成轴对称,那么这两个图形有什么关系?(如下图,ABC和ABC关于直线MN对称) 3如图,ABC和ABC关于直线MN对称,点A、B、C分别是点A、B、C的对称点,线段AA、BB、CC与直线MN有什么关系?图3实验探究1折一折要解决问题3,我们可以从最简单的一个点开始:先将一张纸对折,用圆规在纸上穿一个孔,然后再把纸展开,记两个孔的位置为点A和点A,折痕为直线MN(如图3)显然,此时点A和点A关于直线MN对称连结点A,A,交直线MN于点P2说一说观察图形,线段AA与直线MN有怎样的位置关系?你能说明理由吗?类似地,点B与点B,点
7、C与点C是否也有同样的关系?你能用语言归纳上述发现的规律吗?注:在这个基础上,教师给出垂直平分线的概念,然后把上述规律概括成图形轴对称的性质()3想一想上述性质是对两个成轴对称的图形来说的,如果是一个轴对称图形,那么它的对应点的连线与对称轴之间是否也与同样的关系呢? (结合教科书第121页的图14.1-5让学生说明)从而得出:类似地,轴对称图形的对称轴,是任何一对对应点连线的垂直平分线合作探究图4探究一:教科书第121页的“探究”学生先思考教科书上的问题,然后让学生以线段代替木条进行画图探究任意画一条线段AB,再画出它的垂直平分线MN,在MN上任意取点P1,P2,P3(如图4),分别量一量点P
8、1,P2,P3到A与B的距离,你有什么发现?你能说明理由吗?请与同伴交流处理方式:要求学生在独立尝试、独立思考的基础上进行合作交流,然后小组汇报学生可以量一量、折一折,也可以运用第十三章的知识证明三角形全等在学生充分讨论的基础上归纳出:线段垂直平分线上的点与这条线段两个端点的距离相等想一想:如图5,我们在教科书第99页的练习1中,应用三角形全等的知识说明了CB=CB,你能运用今天所学的知识给出解释吗?图5问题:反过来,如果PA=PB,那么点P是否在线段AB的垂直平分线上?图6探究二:如图6,PA=PB,取线段AB的中点O,连结PO,PO与AB有怎样的位置关系?从而得出:与一条线段两个端点距离相
9、等的点在这条线段的垂直平分线上归纳结论:见教科书第122页的最后一段话3练习:教科书第123页小结提高 1本节课你学到了什么? 2轴对称图形的性质与线段垂直平分线的性质之间的联系;在解决问题的过程中所看到的新旧知识之间的联系作业布置:教科书第,第60页第5、9题教学后记: “实践探究、合作探究、折一折、说一说、想一想”,充分体现了新课程所倡导的理念,此外本课非常注意知识的前后联系如在复习轴对称概念的基础上探究轴对称的性质,轴对称的性质与全等三角形联系,用本课的知识去解释前面的问题等等同时还注重知识的应用,因此,学生学起来兴致很高。第三课时13.1 轴对称(3)教学目标 了解线段垂直平分线的画法
10、 会画两个成轴对称的图形(或一个轴对称图形)的对称轴 通过画图和欣赏,陶冶学生的审美情操教学重点:画图形的对称轴教学难点:对对称轴画法的理解教学设计提出问题问题1:如果我们感觉两个平面图形是成轴对称的,你准备用什么方法去验证?问题2:两个成轴对称的图形,不经过折叠,你用什么方法画出它的对称轴?学习新知我们已经知道,如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线因此我们只要找到这两个图形的一对对应点,然后画出以这两个对应点为端点的线段的垂直平分线就可以了如何画一条线段的垂直平分线呢?例1(补充)已知线段AB(如图1),用直尺和圆规作线段AB的垂直平分线图1可按如下的
11、步骤进行:图2(1)教师启发:根据线段垂直平分线的性质,只要找到与A,B两点的距离相等的两个点即可(2)作图示范写出作法,根据作法一步一步地作出图形(3)解后反思:在上述作法中,为什么有CA=CB,DA=DB?如图2,直线CD与AB的交点就是线段AB的中点,因此用这种方法可以作出线段的中点;你还有其他的方法画一条线段的垂直平分线吗?解决问题:练习:教科书第123页中的例题例2(补充)如图3,ABC和ABC是两个成轴对称的图形,请画出它的对称轴 实践和应用1练习:教科书第124页师生小结 1线段垂直平分线的作法; 2画成轴对称的图形的对称轴的几种常见方法: (1)将图形对折; (2)用尺规作图;
12、 (3)用刻度尺先取一对对称点连线的中点,然后画垂线作业布置 教科书第60页第4题,第60页第7、8题;教学后记: “问题是数学的心脏”数学教学离不开问题的教学,在本课中始终围绕着问题展开首先提出问题,引起学生的思考,然后从简单的问题着手进行探讨在这个过程中,有教师的启发引导,有学生的独立思考,有解题后的反思,有问题的发散性,有解决问题方法的运用等,最后达到解决问题、提高学生解决问题能力的目的。第四课时13.2.1用坐标表示轴对称教学目标 能在直角坐标系中画出点关于坐标轴对称的点 能表示点关于坐标轴对称的点的坐标,表示关于平行于坐标轴的直线对称的点的坐标在找关于坐标轴对称的点的坐标之间规律并检
13、验其正确性的过程中,培养学生的语言表达能力,观察能力、归纳能力,养成良好的科学研究方法在找点、绘图的过程中使学生体验数形结合思想、体验学习的乐趣教学重点:用坐标表示点关于坐标轴对称的点的坐标教学难点:找对称点的坐标之间的关系、规律教学准备 画有网格的平面直角坐标系图的练习纸教学设计创设情境,引入新课引言:同学们,我们的首都北京是大家都向往的地方,你们去过北京吗?让我们一起去北京逛一逛,好吗?(多媒体放映北京城,抽象出形象地图)引出问题:老北京的地图中,其中西直门和东直门是关于中轴线对称的,如果以天安门为原点,分别以长安街和中轴线为x轴和y轴建立平面直角坐标系,对应于如图所示的东直门的坐标,你能
14、找到西直门的位置,说出西直门的坐标吗?用坐标表示轴对称,可以很方便地确定一个地方的位置,实际上在我们日常生活中应用非常广泛,如工程建设的绘图等这节课我们就来学习用点表示轴对称引入课题:用坐标表示轴对称合作探究,探索新知(1)在直角坐标系中画出下列已知点A(2,-3);B(-1,2);C(-6,-5);D(3,5);E(4,0);F(0,-3)(2)画出这些点分别关于x轴、y轴对称的点并填写表格(3)请你仔细观察点的坐标,你能发现关于坐标轴对称的点的坐标有什么规律吗?(4)请你想办法检验你所发现的规律的正确性说说你是如何检验的利用刚才发现的点关于x轴、y轴对称的点的坐标规律,我们可以很容易地在平
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 新人 八年 级数 上册 12 轴对称 教案 11
限制150内