2018-2019学年高考真题——文数(全国卷Ⅲ)+Word版含解析(共16页).doc
《2018-2019学年高考真题——文数(全国卷Ⅲ)+Word版含解析(共16页).doc》由会员分享,可在线阅读,更多相关《2018-2019学年高考真题——文数(全国卷Ⅲ)+Word版含解析(共16页).doc(16页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上众志成城卧虎藏龙地豪气干云秣马砺兵锋芒尽露披星戴月时书香盈耳含英咀华学业必成绝密启用前2018-2019学年普通高等学校招生全国统一考试最新试卷十年寒窗苦,踏上高考路,心态放平和,信心要十足,面对考试卷,下笔如有神,短信送祝福,愿你能高中,马到功自成,金榜定题名。文科数学注意事项:1答卷前,考生务必将自己的姓名和准考证号填写在答题卡上。2回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上。写在本试卷上无效。3考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小
2、题,每小题5分,共60分在每小题给的四个选项中,只有一项是符合题目要求的1. 已知集合,则A. B. C. D. 【答案】C【解析】分析:由题意先解出集合A,进而得到结果。详解:由集合A得,所以故答案选C.点睛:本题主要考查交集的运算,属于基础题。2. A. B. C. D. 【答案】D【解析】分析:由复数的乘法运算展开即可。.故选D.点睛:本题主要考查复数的四则运算,属于基础题。3. 中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫榫头,凹进部分叫卯眼,图中木构件右边的小长方体是榫头若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是A. A B. B
3、 C. C D. D【答案】A【解析】分析:观察图形可得。详解:观擦图形图可知,俯视图为故答案为A.点睛:本题主要考擦空间几何体的三视图,考查学生的空间想象能力,属于基础题。4. 若,则A. B. C. D. 【答案】B【解析】分析:由公式可得。详解:故答案为B.点睛:本题主要考查二倍角公式,属于基础题。5. 若某群体中的成员只用现金支付的概率为0.45,既用现金支付也用非现金支付的概率为0.15,则不用现金支付的概率为A. 0.3 B. 0.4 C. 0.6 D. 0.7【答案】B【解析】分析:由公式计算可得详解:设设事件A为只用现金支付,事件B为只用非现金支付,则因为所以故选B.点睛:本题
4、主要考查事件的基本关系和概率的计算,属于基础题。6. 函数的最小正周期为A. B. C. D. 【答案】C【解析】分析:将函数进行化简即可详解:由已知得的最小正周期故选C.点睛:本题主要考查三角函数的化简和最小正周期公式,属于中档题7. 下列函数中,其图像与函数的图像关于直线对称的是A. B. C. D. 【答案】B【解析】分析:确定函数过定点(1,0)关于x=1对称点,代入选项验证即可。详解:函数过定点(1,0),(1,0)关于x=1对称的点还是(1,0),只有过此点。故选项B正确点睛:本题主要考查函数的对称性和函数的图像,属于中档题。8. 直线分别与轴,轴交于,两点,点在圆上,则面积的取值
5、范围是A. B. C. D. 【答案】A【解析】分析:先求出A,B两点坐标得到再计算圆心到直线距离,得到点P到直线距离范围,由面积公式计算即可详解:直线分别与轴,轴交于,两点,则点P在圆上圆心为(2,0),则圆心到直线距离故点P到直线的距离的范围为则故答案选A.点睛:本题主要考查直线与圆,考查了点到直线的距离公式,三角形的面积公式,属于中档题。9. 函数的图像大致为A. A B. B C. C D. D【答案】D【解析】分析:由特殊值排除即可详解:当时,排除A,B.,当时,,排除C故正确答案选D.点睛:本题考查函数的图像,考查了特殊值排除法,导数与函数图像的关系,属于中档题。10. 已知双曲线
6、的离心率为,则点到的渐近线的距离为A. B. C. D. 【答案】D【解析】分析:由离心率计算出,得到渐近线方程,再由点到直线距离公式计算即可。详解:所以双曲线的渐近线方程为所以点(4,0)到渐近线的距离故选D点睛:本题考查双曲线的离心率,渐近线和点到直线距离公式,属于中档题。11. 的内角,的对边分别为,若的面积为,则A. B. C. D. 【答案】C【解析】分析:由面积公式和余弦定理进行计算可得。详解:由题可知所以由余弦定理所以故选C.点睛:本题主要考查解三角形,考查了三角形的面积公式和余弦定理。12. 设,是同一个半径为4的球的球面上四点,为等边三角形且其面积为,则三棱锥体积的最大值为A
7、. B. C. D. 【答案】B【解析】分析:判断出当平面时,三棱锥体积最大,然后进行计算可得。详解:如图所示,点M为三角形ABC的重心,E为AC中点,当平面时,三棱锥体积最大此时,,点M为三角形ABC的重心中,有故选B.点睛:本题主要考查三棱锥的外接球,考查了勾股定理,三角形的面积公式和三棱锥的体积公式,判断出当平面时,三棱锥体积最大很关键,由M为三角形ABC的重心,计算得到,再由勾股定理得到OM,进而得到结果,属于较难题型。二、填空题:本题共4小题,每小题5分,共20分13. 已知向量,若,则_【答案】【解析】分析:由两向量共线的坐标关系计算即可。详解:由题可得 ,即故答案为点睛:本题主要
8、考查向量的坐标运算,以及两向量共线的坐标关系,属于基础题。【答案】分层抽样【解析】分析:由题可知满足分层抽样特点详解:由于从不同龄段客户中抽取,故采用分层抽样故答案为:分层抽样。点睛:本题主要考查简单随机抽样,属于基础题。15. 若变量满足约束条件则的最大值是_【答案】3【解析】分析:作出可行域,平移直线可得详解:作出可行域由图可知目标函数在直线与的交点(2,3)处取得最大值3故答案为3.点睛:本题考查线性规划的简单应用,属于基础题。16. 已知函数,则_【答案】【解析】分析:发现可得。详解:,则故答案为:-2点睛:本题主要考查函数的性质,由函数解析式,计算发现和关键,属于中档题。三、解答题:
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2018 2019 学年 高考 全国卷 Word 解析 16
限制150内