2017届高三数学复习专题8平面向量(共66页).doc
《2017届高三数学复习专题8平面向量(共66页).doc》由会员分享,可在线阅读,更多相关《2017届高三数学复习专题8平面向量(共66页).doc(66页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上2017届高三数学复习专题8平面向量1(2015课标,7,易)设D为ABC所在平面内一点,3,则()A. B.C. D.1A考向1如图所示,在ABC中,.又3,.2(2014课标,6,易)设D,E,F分别为ABC的三边BC,CA,AB的中点,则()A. B. C. D.2A考向1如图,()2.3(2012广东,3,易)若向量(2,3),(4,7),则()A(2,4) B(2,4)C(6,10) D(6,10)3A考向3(2,3)(4,7)(2,4)4(2013辽宁,3,易)已知点A(1,3),B(4,1),则与向量同方向的单位向量为()A. B.C. D.4A考向2(
2、3,4),|5.与同方向的单位向量为.故选A.5(2012安徽,8,中)在平面直角坐标系中,点O(0,0),P(6,8),将向量绕点O按逆时针方向旋转后得向量,则点Q的坐标是()A(7,) B(7,)C(4,2) D(4,2)5A考向3由题意,得|10,由三角函数定义,设P点坐标为(10cos ,10sin ),则cos ,sin .则Q点的坐标应为.由三角函数知识得10 cos 7,10sin,所以Q(7,)故选A.思路点拨:向量旋转前后模保持不变,因此求Q点的坐标关系是求出旋转后与x轴正向的夹角,然后根据三角函数的定义求解6(2014北京,10,易)已知向量a,b满足|a|1,b(2,1)
3、,且ab0(R),则|_.6考向3【解析】ab0,ab.|a|b|,|a|b|,|1,|.【答案】7(2013四川,12,易)在平行四边形ABCD中,对角线AC与BD交于点O,则_7考向1【解析】如图,因为ABCD为平行四边形,所以2,已知,故2.【答案】28(2014陕西,18,12分,中)在直角坐标系xOy中,已知点A(1,1),B(2,3),C(3,2),点P(x,y)在ABC三边围成的区域(含边界)上(1)若0,求|;(2)设mn(m,nR),用x,y表示mn,并求mn的最大值8考向1,3解:(1)方法一:0,又(1x,1y)(2x,3y)(3x,2y)(63x,63y),解得x2,y
4、2,即(2,2),故|2.方法二:0,则()()()0,()(2,2),|2.(2)(x,y),(1,2),(2,1)mn,(x,y)(m2n,2mn),得,mnyx,令mnt,由图知,当直线yxt过点B(2,3)时,t取得最大值,故mn的最大值为1.思路点拨:(1)根据向量相等,求出P点坐标后求|;(2)根据向量相等,将mn转化为x,y的关系,变换为线性规划问题平面向量的线性运算是高考对平面向量考查的一个重点内容,主要考查三角形法则及平行四边形法则的应用,通常有两个考查角度:(1)向量的线性表示;(2)加(减)法运算几何意义的应用考题多以选择题或填空题的形式出现,属于中低档题目,所占分值为5
5、分 1(1)(2014浙江,8)记maxx,yminx,y设a,b为平面向量,则()Amin|ab|,|ab|min|a|,|b|Bmin|ab|,|ab|min|a|,|b|Cmax|ab|2,|ab|2|a|2|b|2Dmax|ab|2,|ab|2|a|2|b|2(2)(2015北京,13)在ABC中,点M,N满足2,若xy,则x_;y_.【解析】(1)方法一:对于平面向量a,b,|ab|与|ab|表示以a,b为邻边的平行四边形的两条对角线的长度,而根据平面几何知识可得,平行四边形两对角线长度的较小者与相邻两边长度的较小者,没有确定的大小关系,故选项A,B均错;又|ab|,|ab|中的较大
6、者与|a|,|b|一定构成非锐角三角形的三条边,由余弦定理知,必有max|ab|2,|ab|2|a|2|b|2,故选项D正确,选项C错误方法二:若a,b同向,令|a|2,|b|3,这时|ab|5,|ab|1,min|ab|,|ab|1,min|a|,|b|2;若令|a|2,|b|6,这时|ab|8,|ab|4,min|ab|,|ab|4,而min|a|,|b|2,显然对任意a,b,min|ab|,|ab|与min|a|,|b|的大小关系不确定,即选项A、B均错同理,若a,b同向,取|a|1,|b|2,则|ab|3,|ab|1,这时max|ab|2,|ab|29,而|a|2|b|25,不可能有m
7、ax|ab|2,|ab|2|a|2|b|2,故选C项错(2)如图,在ABC中,(),x,y.【答案】(1)D(2) 1.(2013江苏,10)设D,E分别是ABC的边AB,BC上的点,ADAB,BEBC.若12(1,2为实数),则12的值为_1【解析】(),又12,1,2.12.【答案】2(2014课标,15)已知A,B,C为圆O上的三点,若(),则与的夹角为_2【解析】由()可知O为BC的中点,即BC为圆O的直径,又因为直径所对的圆周角为直角,所以BAC90,所以与的夹角为90.【答案】90,解题(1)的关键是结合向量模的几何意义,加减运算的几何意义,通过图形分析得到正确选项;也可从选择题的
8、特点入手,通过对a,b特殊化,从而得到|ab|,|ab|的值,通过比较大小关系排除错误选项,得出正确答案解题(2)的关键是结合图形,正确运用平面向量加减运算的三角形法则,通过对向量的逐步分解即可求得结果平面向量线性运算的解题策略(1)用已知向量表示某个向量问题的基本解题思路观察各个向量的位置,特别注意平行关系;寻找相应的三角形或多边形;利用法则找关系;化简结果其中要特别注意结论:若AD是ABC的中线,则有()(2)构造三角形或平行四边形分析向量模之间的关系根据向量线性运算的几何意义,涉及比较分析向量的模之间的大小关系等问题,均可构造三角形或平行四边形,通过三角形中的边角关系来确定向量模之间的关
9、系高考对共线向量定理、平面向量基本定理的考查主要有以下几个方面:(1)利用共线向量定理求参数的值;(2)利用平面向量基本定理结合向量的线性运算对向量进行分解;(3)在坐标表示的前提下由向量共线求参数值或对向量进行分解一般以选择题、填空题的形式出现,难度中等,分值为5分 2(1)(2012大纲全国文,9)ABC中,AB边的高为CD,若a,b,ab0,|a|1,|b|2,则()A.abB.abC.ab D.ab(2)(2015课标,13)设向量a,b不平行,向量ab与a2b平行,则实数_【解析】(1)方法一:ab0,ACB90,AB,CD.BD,AD,ADBD41.()ab.方法二:如图,以C为原
10、点,CA,CB所在直线分别为x轴、y轴建立平面直角坐标系由已知得A(2,0),B(0,1)又因为CDAB,所以可求得D,于是,而a(0,1),b(2,0),若设xayb,则有即故ab.(2)因为ab与a2b平行,所以存在实数,使ab(a2b),即()a(12)b0.由于a,b不平行,所以解得.【答案】(1)D(2) 1.(2014福建,8)在下列向量组中,可以把向量a(3,2)表示出来的是()Ae1(0,0),e2(1,2) Be1(1,2),e2(5,2)Ce1(3,5),e2(6,10) De1(2,3),e2(2,3)1B方法一:若e1(0,0),e2(1,2),则e1e2,而a不能由e
11、1,e2表示,排除A;若e1(1,2),e2(5,2),因为,所以e1,e2不共线,根据平面向量基本定理,可以把向量a(3,2)表示出来,故选B.方法二:因为a(3,2),若e1(0,0),e2(1,2),不存在实数,使得ae1 e2,排除A;若e1(1,2),e2(5,2),设存在实数,使得ae1 e2,则(3,2)(5,22),所以解得所以a2e1e2,故选B.2(2012四川,7)设a,b都是非零向量,下列四个条件中,使成立的充分条件是()Aab BabCa2b Dab且|a|b|2C因为向量的方向与向量a相同,向量的方向与向量b相同,且,所以向量a与向量b方向相同,故可排除选项A,B,
12、D.当a2b时,故a2b是成立的充分条件,求解向量共线问题的注意事项(1)向量共线的充要条件中,当两向量共线时,通常只有非零向量才能表示与之共线的其他向量,注意待定系数法和方程思想的运用(2)证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得到三点共线(3)若a与b不共线且ab,则0.(4)直线的向量式参数方程,A,P,B三点共线(1t)t(O为平面内任一点,tR)(5)(,为实数),若A,B,C三点共线,则1.应用平面向量基本定理应注意的问题(1)只要两个向量不共线,就可以作为平面向量的一组基底,基底可以有无穷多组,在解决具体问题时
13、,合理地选择基底会给解题带来方便(2)利用已知向量表示未知向量,实质就是利用平行四边形法则或三角形法则进行向量的加减运算或数乘运算高考对平面向量坐标运算的考查主要有以下几个方面:(1)用坐标进行线性运算;(2)在坐标表示下两向量共线与垂直条件的应用;(3)用坐标运算进行向量的分解高考中该类问题多以客观题的形式出现,难度一般,为中低档题目,分值为5分 3(1)(2014陕西,13)设0,向量a(sin 2,cos ),b(cos ,1),若ab,则tan _(2)(2013北京,13)向量a,b,c在正方形网格中的位置如图所示,若cab(,R),则_【解析】(1)因为ab,所以sin 2cos2
14、,即2sin cos cos2.因为0,所以cos 0,得2sin cos ,所以tan .(2)以向量a和b的交点为原点建立如图所示的平面直角坐标系(设每个小正方形边长为1),则A(1,1),B(6,2),C(5,1),a(1,1),b(6,2),c(1,3)cab,(1,3)(1,1)(6,2),即解得2,4.【答案】(1)(2)4 在考题展示(1)中,若,a,b的坐标不变,且ab,求tan 的值解:由于ab,所以ab0,即sin 2cos cos 0,因为0),且|OC|2,若,则实数,的值分别是_7考向3【解析】|2,|21c24,c0,c.,(1,)(1,0)(0,1),1,.【答案
15、】1,8(2015安徽阜阳一模,14)在梯形ABCD中,已知ABCD,AB2CD,M,N分别为CD,BC的中点若,则_8考向2【解析】方法一:由,得()(),则0,得0,得0.又因为,不共线,所以由平面向量基本定理得解得所以.方法二:如图,连接MN并延长交AB的延长线于T,由已知易得ABAT,.T,M,N三点共线,.【答案】1(2016课标,3,易)已知向量a(1,m),b(3,2),且(ab)b,则m()A8 B6 C6 D81D考向1方法一:ab(4,m2),(ab)b,(ab)b0,即122(m2)0,解得m8.方法二:(ab)b,(ab)b0,即abb20.32m940,解得m8.2(
16、2016课标,3,易)已知向量,则ABC()A30 B45 C60 D1202A考向2如图易知|1,则60,30,ABC30.3(2016山东,8,中)已知非零向量m,n满足4|m|3|n|,cosm,n.若n(tmn),则实数t的值为()A4 B4 C. D3B考向1由题意得,cosm,n,所以mnn2.因为n(tmn)0,所以tmnn20,即tn2n20,所以t4.4(2015山东,4,易)已知菱形ABCD的边长为a,ABC60,则()Aa2 Ba2C.a2 D.a24D考向1,且,()2|cos 60|2a2a2a2.故选D.5(2014重庆,4,易)已知向量a(k,3),b(1,4),
17、c(2,1),且(2a3b)c,则实数k()A B0 C3 D.5C考向22a3b(2k3,6),由(2a3b)c,得4k660,解得k3.故选C.6(2014课标,3,易)设向量a,b满足|ab|,|ab|,则ab()A1 B2 C3 D56A考向2由|ab|得a2b22ab10,由|ab|得a2b22ab6,得4ab4,ab1,故选A.7(2013福建,5,易)在四边形ABCD中,(1,2),(4,2),则该四边形的面积为()A. B2 C5 D107C考向3(1,2)(4,2)0,故.故四边形ABCD的对角线互相垂直,面积S|25,故选C.8(2015安徽,8,中)ABC是边长为2的等边
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2017 届高三 数学 复习 专题 平面 向量 66
限制150内