《一元一次不等式组解题技巧(共29页).doc》由会员分享,可在线阅读,更多相关《一元一次不等式组解题技巧(共29页).doc(29页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上一元一次不等式组解题技巧一、重点难点提示 重点:理解一元一次不等式组的概念及解集的概念。 难点:一元一次不等式组的解集含义的理解及一元一次不等式组的几个基本类型解集的确定。 二、学习指导: 1、几个一元一次不等式合在一起,就组成了一个一元一次不等式组。但这“几个一元一次不等式”必须含有同一个未知数,否则就不是一元一次不等式组了。 2、前面学习过的二元一次方程组是由二个一次方程联立而成,在解方程组时,两个方程不是独立存在的(代入法和加减法本身就说明了这点);而一元一次不等式组中几个不等式却是独立的,而且组成不等式组的不等式的个数可以是三个或多个。(课本上主要学习由两个一
2、元一次不等式组成的不等式组)。 3、在不等式组中,几个一元一次不等式的解集的公共部分,叫做由它们组成的一元一次不等式组的解集。(注意借助于数轴找公共解) 4、一元一次不等式组的基本类型(以两个不等式组成的不等式组为例) 类型(设ab)不等式组的解集 数轴表示 1) (同大型,同大取大)xa 2) (同小型,同小取小) xb 3) (一大一小型,小大之间) bx (1)分别解不等式组的每 解不等式(2)得x4 一个不等式 (2)求组的解集 (借助数轴找公共部分) (利用数轴确定不等式组的解集) 原不等式组的解集为 -1, 解不等式(2)得x1, 解不等式(3)得x2, 在数轴上表示出各个解为:
3、原不等式组解集为-1-1, 解不等式(2), |x|5, -5x5, 将(3)(4)解在数轴上表示出来如图, 原不等式组解集为-14x-5得:x3, 1、先求出不等式组 解不等式 1得x2, 的解集。 2、在解集中找出它 所要求的特殊解, 原不等式组解集为x2, 正整数解。 这个不等式组的正整数解1、2。 例5 m为何整数时,方程组 的解是非负数? 分析:本题综合性较强,注意审题,理解方程组解为非负数概念,即 。先解方程组用m的代数式表示x, y, 再运用“转化思想”,依据方程组的解集为非负数的条件列出不等式组寻求m的取值范围,最后切勿忘记确定m的整数值。 解:解方程组 得 方程组 的解是非负
4、数, 即 解不等式组 此不等式组解集为 m , 又 m为整数, m=3或m=4。 例6解不等式 0. 分析:由“ ”这部分可看成二个数的“商”此题转化为求商为负数的问题。两个数的商为负数这两个数异号,进行分类讨论,可有两种情况。(1) 或(2) 因此,本题可转化为解两个不等式组。 解: 0, (1) 或 (2) 由(1) 无解, 由(2) - x , 原不等式的解为- x . 例7.解不等式-33x-15. 解法(1):原不等式相当于不等式组 解不等式组得- x2, 原不等式解集为- x2. 解法(2):将原不等式的两边和中间都加上1,得-23x6, 将这个不等式的两边和中间都除以3得, -
5、x2, 原不等式解集为- x2. 例8.x取哪些整数时,代数式 与代数式 的差不小于6而小于8。 分析:(1)“不小于6”即6, (2) 由题意转化成不等式问题解决, 解:由题意可得,6 - - , 原不等式组解集为- x6, - x6的整数解为x=3, 2, 1, 0, 4, 5, 6. 当x取3,2,1,0,4,5,6时两个代数式差不小于6而小于8。 例9.有一个两位数,它十位上的数比个位上的数小2,如果这个两位数大于20并且小于40,求这个两位数。 分析:这题是一个数字应用题,题目中既含有相等关系,又含有不等关系,需运用不等式的知识来解决。题目中有两个主要未知数-十位上的数字与个位上的数
6、;一个相等关系:个位上的数=十位上的数+2,一个不等关系:20原两位数40。 解法(1):设十位上的数为x, 则个位上的数为(x+2), 原两位数为10x+(x+2), 由题意可得:2010x+(x+2)40, 解这个不等式得,1 x3 , x为正整数, 1 x3 的整数为x=2或x=3, 当x=2时, 10x+(x+2)=24, 当x=3时, 10x+(x+2)=35, 答:这个两位数为24或35。 解法(2):设十位上的数为x, 个位上的数为y, 则两位数为10x+y, 由题意可得 (这是由一个方程和一个不等式构成的整体,既不是方程组也不是不等式组,通常叫做“混合组”)。 将(1)代入(2
7、)得,2011x+240, 解不等式得:1 x3 , x为正整数,1 x3 的整数为x=2或x=3, 当x=2时,y=4, 10x+y=24, 当x=3时,y=5, 10x+y=35. 答:这个两位数为24或35。 解法(3):可通过“心算”直接求解。方法如下:既然这个两位数大于20且小于40,所以它十位上的数只能是2或3。当十位数为2时,个位数为4,当十位数为3时,个位数为5,所以原两位数分别为24或35。 例10.解下列不等式: (1)| |4; (2) 0. (1)分析:这个不等式不是一元一次不等式,因此,不能用解一元一次不等式的方法来解。但由绝对值的知识|x|0)可知-axa, (a0
8、)则xa或x-a. 解:| |4, -4 4, 由绝对值的定义可转化为: 即 解不等式(1),去分母:3x-1-8, 解不等式(2)去分母:3x-18, 移项:3x-8+1, 移项:3x8+1, 合并同类项:3x-7 合并同类项:3x9, 系数化为1, x- , 系数化为1: x3, , 原不等式的解集为- x3. (2)分析:不等式的左边为 是两个一次式的比的形式(也是以后要讲的分式形式),右边是零。它可以理解成“当x取什么值时,两个一次式的商是负数?”由除法的符号法则可知,只要被除式与除式异号,商就为负值。因此这个不等式的求解问题,可以转化为解一元一次不等式组的问题。 解: 0, 3x-6
9、与2x+1异号, 即:I 或II 解I的不等式组得 , 不等式组无解, 解II的不等式组得 , 不等式组的解集为- x2, 原不等式的解集为- x0, (3x-6)与(2x+1)同号, 即I 或II 解I的不等式组得 , 不等式组的解集为x2, 解II的不等式组得 , 不等式组的解集为x2或x0(或 0)与ab0(或 0(或 0), a、b同号, 即I 或II , 再分别解不等式组I和II, 如例10的(3)题。 (2)ab0(或 0), ab0(或 0), a、b异号, 即I 或II , 再分别解不等式组I和不等式组II。 例11.已知整数x满足不等式3x-46x-2和不等式 -1 , 并且
10、满足方程3(x+a)=5a-2试求代数式5a3- 的值。 分析:同时满足两个不等式的解的x值实际是将这两个不等式组成不等式组,这个不等式组的解集中的整数为x值。再将x值代入方程3(x+a)=5a-2,转化成a的方程求出a值,再将a代入代数式5a3- 即可。 解: 整数x满足3x-46x-2和 -1 , x为 ,解集的整数值, 解不等式(1),得x- , 解不等式(2)得,x1, 的解集为- x1. - x3 B、不等式组 的解集是-3x-2 C、不等式组 的解集是x-1 D、不等式组 的解集是-4x1 B、x3 C、x3 D、1x3 3不等式组 的解集是( ) A、x1 C、x8 B、m8 C
11、、m2 B、x1 C、x2 D、x1或x2 答案与解析答案:1、D 2、D 3、D 4、C 5、C 解析: 2.分析:由(1)得x1 1x3 答案:D 3.分析:先解不等式,看是否有解,由(1)得x2,两者无公共部分,所以选D。答案:D 5.因x-1与x-2的值的符号相同,所以 或 可求得 x2或x0或ax+bb或axb或axb a0)后,再把系数化为1。应特别注意的是,当不等式的两边都乘以或除以同一个负数时,不等号的方向必须改变 中考典例: 1解不等式 (x1)1,并把它的解集在数轴上表示出来 考点:一元一次不等式的解法 评析:一元一次不等式的解法与一元一次方程的解法相类似,只要注意不等式性
12、质3的运用该题可先去分母(不要漏乘),再去括号,然后化成axb或axb的形式,最后得出解集,解题过程如下: 解:原不等式化为:x22(x1)2 x22x+22 它在数轴上表示为: 2(河北省)在一次“人与自然”知识竞赛中,竞赛试题共有25道题,每道题都给出4个答案,其中只有一个答案正确,要求学生把正确答案选出来,每道题选对得4分,不选或选错倒扣2分如果一个学生在本次竞赛中的得分不低于60分,那么,他至少选对了_道题 考点:一元一次不等式的应用 评析:可设选对了x道,那么选错或不选的共有(25x)道题。根据题意,可以列不等式为4x2(25x)60,解不等式得18 ,取解集中的最小整数为19 说明
13、:列不等式解的应用题,一般所求问题有至少、或最多、或不低于等词的要求,要正确理解这几个词的含义 3商场出售的A型冰箱每台售价2190元,每日耗电量为1度,而B型节能冰箱每台售价虽比A型冰箱高出10%,但每日耗电量却为0.55度现将A型冰箱打折出售(打一折后的售价为原价的 ),问商场至少打几折,消费者购买才合算(按使用期为10年,每年365天,每度电0.40元计算)? 考点:一元一次不等式的应用 评析:列一元一次不等式解应用题首先要弄清题意,设出适当的未知数消费者要买A型冰箱,10年的花费用比B型少才行,设打x折,那么A型10年的费用为2190 +3651010.40,B型10年的费用为2190
14、(1+10%)+365100.550.40,根据题意得不等式2190 +3651010.402190(1+10%)+365100.550.40 解得x 8,所以至少打八折,解题过程如下: 解:设商场将A型冰箱打x折出售,消费者购买才合算 依题意,有 2190 +3651010.42190(1+10%)+365100.550.4 即 21914602409803 解这个不等式,得 x8 答:商场应将A型冰箱至少打八折出售,消费者购买才合算 真题专练: 1不等式72x 1的正整数解是 2若代数式 +2x的值不大于代数式8 的值,那么x的正整数解是 3恩格尔系数表示家庭日常饮食开支占家庭经济总收入的
15、比例,它反映了居民家庭的实际生活水平,各种类型家庭的恩格尔系数如下表所示:家庭类型贫困家庭温饱家庭小康家庭发达国家家庭最富裕国家家庭思格尔系数(n) 75%以上50%75% 40%49% 20%39% 不到20% 则用含n的不等式表示小康家庭的恩格尔系数为_ 4(杭州市)x的2倍减3的差不大于1,列出的不等式是 ( ) A、2x31B、2x31C、2x31D、2x31 5(内江市)解不等式 6(安徽省)解不等式3x2(12x)1,并把解集在数轴上表示出来 7(陕西省)乘某城市的一种出租汽车起价是10元(即行驶路程在5km以内都需付10元车费),达到或超过5km后,每增加1km加价12元(不足1
16、km部分按1km计)现在某人乘这种出租汽车从甲地到乙地,支付车费172元,从甲地到乙地的路大约是多少? 答案: 1、1,2; 2、1,2,3(提示:根据题意得不等式 +2x8 解不等式得x , 正整数解为1,2,3); 3、40%n49% 4、A; 5、解:去分母得8x420x215x60 移项合并同类项得27x54 解得x2 6、解:3x2+4x1, 7x3, x 所以原不等式的解集为x 在数轴上表示为: 7、解:设从甲地到乙地的路程大约是xkm,根据题意,得 1610+1.2(x5)17.2 解此不等式组,得 10x11 答:从甲地到乙地的路程大于10km,小于或等于11km一元一次不等式
17、组和它的解法考点扫描: 1了解一元一次不等式组及其解集的概念 2掌握一元一次不等式组的解法,会用数轴确定一元一次不等式组的解集 名师精讲: 1一元一次不等式组及其解集: 几个含有同一个未知数的一元一次不等式合在一起,就组成了一个一元一次不等式组几个一元一次不等式的解集的公共部分,叫做由它们所组成的一元一次不等式组的解集 2求不等式组的解集的过程,叫做解不等式组 3解一元一次不等式组的步骤: (1)分别求出不等式组中各个不等式的解集; (2)利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集 中考典例: 1不等式组 的解集是_ 考点:一元一次不等式组的解法 评析:分别求出不等式组中的每
18、一个不等式的解集,解不等式(1)得x4,解不等式(2)得x5,公共部分是x4,即为不等式组的解集,所以结果为x4 2若不等式组 的解集为1x1,那么(a+1)(b1)的值等于 考点:不等式组解集的应用 评析:此题类型是;已知不等式组的解集,求其中字母系数,进而求关于字母系数的代数式的值。这类问题解法是:先解不等式组,求得其解集,再与给出的解集相联系,求出字母系数的值,进而代入所给代数式,求出代数式的值,具体解法如下: 解:由21得x ;由2b3得x3+2b,因为方程组有解,所以, 3+2b,方程组的解是32 ,又已知方程组的解是:-1B、x6C、1 x 6D、x6 8不等式组 的解在数轴上可表
19、示为( ) 9不等式组 的解集( ) A、x1B、x2C、1x2D、1x2 10不等式组 的整数解是( ) A、1,0,1B、1,1 C、1,0 D、0,1 11不等式组成 的整数解的个数是( ) A、1个B、2个C、3个D、4个 12一元一次不等式组 的解集在数轴上表示正确的是( ) A、 B、 C、 D、 13不等式组 的解集是( ) A、2x1B、x2D、无解 14不等式组 的解集是( ) A、4x1B、4x1C、1x4D、1x4 15不等式组 的整数解的个数是( ) A、1B、2C、3D、4 16有解集为2x3的不等式组是( ) A、 B、 C、 D、 17解不等式组 18解不等式组
20、19求不等式组 的整数解 20解不等式组 21解不等式组 并写出不等式组的整数解 22解不等式组, 并把解集在数轴上表示出来 23解不等式组 并把解集在数轴上表示出来 24解不等式组 25解不等式组 并在数轴上表示解集 26求不等式组 的整数解 答案: 1、4 x2,3; 2、2x4; 3、1x2; 4、x3; 5、10x2 6、0a1(提示由已知得xa ,x3,则其解集为ax3,故a的范围为0a1; 7、C8、A9、D10、C11、D12、C13、A14、A15、C16、C 17、解:解不等式(1),得x3 解不等式(2),得x+83x x2 在数轴上表示不等式(1),(2)的解集 不等式组
21、的解集为-23 18、解:解10 4 (x 3)2 (x 1),得x4 解x 1 , 得x 不等式组的解集为 x4 19、解:解3x+75(x+2),得x 解 ,得x2 不等式组的解集为 x2 在 x2中的整数有1、0、1 不等式组的整数解是:1、0、1 20、解:解不等式得 x2 解不等式得 x1 所以不等式组的解集是1x2 21、解:解不等式2x+53(x+2),得x1解不等式 得x3,则m的取值范围是( )。 A、m3 B、m=3 C、m3,得3m, 选D。 例3(重庆市中考题)若不等式组 的解集是-1x1,那么(a+1)(b-1)的值等于_。 解:化简不等式组,得 它的解集是-1x2的
22、解集为 ,则a的取值范围是( )。 A、a0 B、a1 C、a0 D、a1 解:对照已知解集,结合不等式性质3得:1-a1,选B。 例5(湖北荆州市中考题)若不等式组 的解集是xa,则a的取值范围是()。 A、a3 D、a3 解:根确定不等式组解集法则:“大大取较大”,对照已知解集xa,得a3, 选D。 三、利用性质,分类求解 例6已知不等式 的解集是 ,求a的取值范围。 解:由解集 得x-20时,得解集 与已知解集 矛盾; 当a-1=0时,化为0x0无解; 当a-10时,得解集 与解集 等价。 例7若不等式组 有解,且每一个解x均不在-1x4范围内,求a的取值范围。 解:化简不等式组,得 它
23、有解, 5a-63aa3;利用解集性质,题意转化为:其每一解在x4内。于是分类求解,当x4时,得42。故 或2a3为所求。 评述:(1)未知数系数含参数的一次不等式,当不明确未知数系数正负情况下,须得分正、零、负讨论求解;对解集不在axb 范围内的不等式(组),也可分xa或x b 求解(2)要细心体验所列不等式中是否能取等号,必要时画数轴表示解集分析等号 四、借助数轴,分析求解 例8(山东聊城中考题)已知关于x的不等式组 的整数解共5个,则a的取值范围是_。 解:化简不等式组,得 有解,将其表在数轴上,如图1,其整数解5个必为x=1,0,-1,-2,-3. 由图1得:-4a-3。变式:(1)若
24、上不等式组有非负整数解,求a的范围 (2)若上不等式组无整数解,求a的范围(答:(1)-11) 例9关于y的不等式组 的整数解是-3,-2,-1,0,1。求参数t的范围。 解:化简不等式组,得 其解集为 借助数轴图2得 化简得 , 。评述:不等式(组)有特殊解(整解、正整数解等)必有解(集),反之不然图2中确定可动点4、B的位置,是正确列不等式(组)的关键,注意体会 五、运用消元法,求混台组中参数范围 例10. 下面是三种食品A、B、C含微量元素硒与锌的含量及单价表某食品公司准备将三种食品混合成100kg,混合后每kg含硒不低于5个单位含量,含锌不低于4.5个单位含量要想成本最低,问三种食品各
25、取多少kg? A B C 硒(单位含量/kg)4 4 6 锌(单位含量/kg)6 2 4 单位(元/kg)9 5 10 解 设A、B、C三种食品各取x,y,z kg,总价S元依题意列混合组 视S为参数,(1)代入(2)整体消去x+y得:4(100-z)+6z500z50,(2)+(3)由不等式性质得:10(x+z)+6y950,由(1)整体消去(x+z)得: 10(100-y)+6y950y12.5,再把(1)与(4)联立消去x得:S=900-4y+z900+4(-12.5)+50,即S900。 当x=37.5kg, y=12.9kg, z=50kg时,S取最小值900元 评述:由以上解法得求混合组中参变量范围的思维模式:由几个方程联立消元,用一个(或多个)未知数表示其余未知数,将此式代入不等式中消元(或整体消元),求出一个或几个未知数范围,再用它们的范围来放缩(求出)参数的范围 涉及最佳决策型和方案型应用问题,往往需列混合组求解作为变式练习,请同学们解混合组 其中a, n为正整数,x,y为正数试确定参数n的取值专心-专注-专业
限制150内