2012年高考真题文科数学解析分类汇编9:圆锥曲线(共29页).doc
《2012年高考真题文科数学解析分类汇编9:圆锥曲线(共29页).doc》由会员分享,可在线阅读,更多相关《2012年高考真题文科数学解析分类汇编9:圆锥曲线(共29页).doc(29页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上2012高考文科试题解析分类汇编:圆锥曲线一、选择题1.【2012高考新课标文4】设是椭圆的左、右焦点,为直线上一点,是底角为的等腰三角形,则的离心率为( ) 【答案】C【命题意图】本题主要考查椭圆的性质及数形结合思想,是简单题.【解析】是底角为的等腰三角形,=,=,故选C.2.【2012高考新课标文10】等轴双曲线的中心在原点,焦点在轴上,与抛物线的准线交于两点,;则的实轴长为( ) 【答案】C【命题意图】本题主要考查抛物线的准线、直线与双曲线的位置关系,是简单题.【解析】由题设知抛物线的准线为:,设等轴双曲线方程为:,将代入等轴双曲线方程解得=,=,=,解得=2,
2、的实轴长为4,故选C.3.【2012高考山东文11】已知双曲线:的离心率为2.若抛物线的焦点到双曲线的渐近线的距离为2,则抛物线的方程为 (A) (B) (C)(D)【答案】D 考点:圆锥曲线的性质解析:由双曲线离心率为2且双曲线中a,b,c的关系可知,此题应注意C2的焦点在y轴上,即(0,p/2)到直线的距离为2,可知p=8或数形结合,利用直角三角形求解。4.【2012高考全国文5】椭圆的中心在原点,焦距为,一条准线为,则该椭圆的方程为(A) (B) (C) (D) 【答案】C【命题意图】本试题主要考查了椭圆的方程以及性质的运用。通过准线方程确定焦点位置,然后借助于焦距和准线求解参数,从而得
3、到椭圆的方程。【解析】因为,由一条准线方程为可得该椭圆的焦点在轴上县,所以。故选答案C5.【2012高考全国文10】已知、为双曲线的左、右焦点,点在上,则(A) (B) (C) (D) 【答案】C【命题意图】本试题主要考查了双曲线的定义的运用和性质的运用,以及余弦定理的运用。首先运用定义得到两个焦半径的值,然后结合三角形中的余弦定理求解即可。【解析】解:由题意可知,设,则,故,利用余弦定理可得。6.【2012高考浙江文8】 如图,中心均为原点O的双曲线与椭圆有公共焦点,M,N是双曲线的两顶点。若M,O,N将椭圆长轴四等分,则双曲线与椭圆的离心率的比值是A.3 B.2 C. D. 【答案】B 【
4、命题意图】本题主要考查了椭圆和双曲线的方程和性质,通过对两者公交点求解离心率的关系.【解析】设椭圆的长轴为2a,双曲线的长轴为,由M,O,N将椭圆长轴四等分,则,即,又因为双曲线与椭圆有公共焦点,设焦距均为c,则双曲线的离心率为,.7.【2012高考四川文9】已知抛物线关于轴对称,它的顶点在坐标原点,并且经过点。若点到该抛物线焦点的距离为,则( )A、 B、 C、 D、【答案】B解析设抛物线方程为y2=2px(p0),则焦点坐标为(),准线方程为x=,点评本题旨在考查抛物线的定义: |MF|=d,(M为抛物线上任意一点,F为抛物线的焦点,d为点M到准线的距离).8.【2012高考四川文11】方
5、程中的,且互不相同,在所有这些方程所表示的曲线中,不同的抛物线共有( )A、28条 B、32条 C、36条 D、48条 【答案】B解析方程变形得,若表示抛物线,则所以,分b=-2,1,2,3四种情况:(1)若b=-2, ; (2)若b=2, 以上两种情况下有4条重复,故共有9+5=14条;同理 若b=1,共有9条; 若b=3时,共有9条.综上,共有14+9+9=32种点评此题难度很大,若采用排列组合公式计算,很容易忽视重复的4条抛物线. 列举法是解决排列、组合、概率等非常有效的办法.要能熟练运用.9.【2012高考上海文16】对于常数、,“”是“方程的曲线是椭圆”的( )A、充分不必要条件 B
6、、必要不充分条件 C、充分必要条件 D、既不充分也不必要条件【答案】B.【解析】方程的曲线表示椭圆,常数常数的取值为所以,由得不到程的曲线表示椭圆,因而不充分;反过来,根据该曲线表示椭圆,能推出,因而必要.所以答案选择B.【点评】本题主要考查充分条件和必要条件、充要条件、椭圆的标准方程的理解.根据方程的组成特征,可以知道常数的取值情况.属于中档题.10.【2012高考江西文8】椭圆的左、右顶点分别是A,B,左、右焦点分别是F1,F2。若|AF1|,|F1F2|,|F1B|成等比数列,则此椭圆的离心率为A. B. C. D. 【答案】B【解析】本题着重考查等比中项的性质,以及椭圆的离心率等几何性
7、质,同时考查了函数与方程,转化与化归思想.利用椭圆及等比数列的性质解题.由椭圆的性质可知:,.又已知,成等比数列,故,即,则.故.即椭圆的离心率为.【点评】求双曲线的离心率一般是通过已知条件建立有关的方程,然后化为有关的齐次式方程,进而转化为只含有离心率的方程,从而求解方程即可. 体现考纲中要求掌握椭圆的基本性质.来年需要注意椭圆的长轴,短轴长及其标准方程的求解等.11.【2012高考湖南文6】已知双曲线C :-=1的焦距为10 ,点P (2,1)在C 的渐近线上,则C的方程为A-=1 B.-=1 C.-=1 D.-=1【答案】A【解析】设双曲线C :-=1的半焦距为,则.又C 的渐近线为,点
8、P (2,1)在C 的渐近线上,即.又,C的方程为-=1.【点评】本题考查双曲线的方程、双曲线的渐近线方程等基础知识,考查了数形结合的思想和基本运算能力,是近年来常考题型.12.【2102高考福建文5】已知双曲线-=1的右焦点为(3,0),则该双曲线的离心率等于A B C D 【答案】C.考点:双曲线的离心率。难度:易。分析:本题考查的知识点为圆锥曲线的性质,利用离心率即可。解答:根据焦点坐标知,由双曲线的简单几何性质知,所以,因此.故选C.二 、填空题13.【2012高考四川文15】椭圆为定值,且的的左焦点为,直线与椭圆相交于点、,的周长的最大值是12,则该椭圆的离心率是_。 【答案】,解析
9、根据椭圆定义知:4a=12, 得a=3 , 又点评本题考查对椭圆概念的掌握程度.突出展现高考前的复习要回归课本的新课标理念.14.【2012高考辽宁文15】已知双曲线x2 y2 =1,点F1,F2为其两个焦点,点P为双曲线上一点,若P F1P F2,则P F1+P F2的值为_.【答案】【命题意图】本题主要考查双曲线的定义、标准方程以及转化思想和运算求解能力,难度适中。【解析】由双曲线的方程可知【点评】解题时要充分利用双曲线的定义和勾股定理,实现差积和的转化。15.【2012高考江苏8】(5分)在平面直角坐标系中,若双曲线的离心率为,则的值为 【答案】2。【考点】双曲线的性质。【解析】由得。
10、,即,解得。16.【2012高考陕西文14】右图是抛物线形拱桥,当水面在时,拱顶离水面2米,水面宽4米,水位下降1米后,水面宽 米.【答案】.【解析】建立如图所示的直角坐标系,使拱桥的顶点的坐标为(0,0), 设与抛物线的交点为,根据题意,知(-2,-2),(2,-2) 设抛物线的解析式为, 则有, 抛物线的解析式为 水位下降1米,则-3,此时有或 此时水面宽为米17.【2012高考重庆文14】设为直线与双曲线 左支的交点,是左焦点,垂直于轴,则双曲线的离心率 18.【2012高考安徽文14】过抛物线的焦点的直线交该抛物线于两点,若,则=_。【答案】【解析】设及;则点到准线的距离为得: 又19
11、.【2012高考天津文科11】已知双曲线与双曲线有相同的渐近线,且的右焦点为,则 【答案】1,2【解析】双曲线的渐近线为,而的渐近线为,所以有,又双曲线的右焦点为,所以,又,即,所以。三、解答题20. 【2012高考天津19】(本小题满分14分)已知椭圆(ab0),点P(,)在椭圆上。(I)求椭圆的离心率。(II)设A为椭圆的右顶点,O为坐标原点,若Q在椭圆上且满足|AQ|=|AO|求直线的斜率的值。【解析】() 点在椭圆上 () 设;则 直线的斜率21.【2012高考江苏19】(16分)如图,在平面直角坐标系中,椭圆的左、右焦点分别为,已知和都在椭圆上,其中为椭圆的离心率(1)求椭圆的方程;
12、(2)设是椭圆上位于轴上方的两点,且直线与直线平行,与交于点P(i)若,求直线的斜率;(ii)求证:是定值【答案】解:(1)由题设知,由点在椭圆上,得,。由点在椭圆上,得椭圆的方程为。(2)由(1)得,又, 设、的方程分别为,。 。 。 同理,。 (i)由得,。解得=2。 注意到,。 直线的斜率为。 (ii)证明:,即。 。 由点在椭圆上知,。 同理。 由得, 。 是定值。【考点】椭圆的性质,直线方程,两点间的距离公式。【解析】(1)根据椭圆的性质和已知和都在椭圆上列式求解。 (2)根据已知条件,用待定系数法求解。22.【2012高考安徽文20】(本小题满分13分)如图,分别是椭圆:+=1()
13、的左、右焦点,是椭圆的顶点,是直线与椭圆的另一个交点,=60.()求椭圆的离心率;()已知的面积为40,求a, b 的值. 【解析】(I) ()设;则 在中, 面积23.【2012高考广东文20】(本小题满分14分)在平面直角坐标系中,已知椭圆:()的左焦点为,且点在上.(1)求椭圆的方程;(2)设直线同时与椭圆和抛物线:相切,求直线的方程.【答案】【解析】(1)因为椭圆的左焦点为,所以,点代入椭圆,得,即,所以,所以椭圆的方程为.(2)直线的斜率显然存在,设直线的方程为,消去并整理得,因为直线与椭圆相切,所以,整理得 ,消去并整理得。因为直线与抛物线相切,所以,整理得 综合,解得或。所以直线
14、的方程为或。24.【2102高考北京文19】(本小题共14分)已知椭圆C:+=1(ab0)的一个顶点为A (2,0),离心率为, 直线y=k(x-1)与椭圆C交与不同的两点M,N()求椭圆C的方程()当AMN的面积为时,求k的值 【考点定位】此题难度集中在运算,但是整体题目难度确实不大,从形式到条件的设计都是非常熟悉的,相信平时对曲线的练习程度不错的学生做起来应该是比较容易的。解:(1)由题意得解得.所以椭圆C的方程为.(2)由得.设点M,N的坐标分别为,则,.所以|MN|=.由因为点A(2,0)到直线的距离,所以AMN的面积为. 由,解得.25.【2012高考山东文21】 (本小题满分13分
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2012 年高 考真题 文科 数学 解析 分类 汇编 圆锥曲线 29
限制150内