《《利用三角形全等测距离》教案(共5页).doc》由会员分享,可在线阅读,更多相关《《利用三角形全等测距离》教案(共5页).doc(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上利用三角形全等测距离教案教学目标一、知识与技能1能利用三角形的全等解决“测量不可到达的两点间的距离”的实际问题;2能在解决实际问题的过程中进行有条理的思考和说理表达;二、过程与方法1经历探索设计构造全等三角形测距离的过程中,培养学生思维的逻辑性和发散性;2掌握利用三角形全等“测距离”的延长全等法、垂直全等法;三、情感态度和价值观1通过故事,激发学生的积极性,感受数学与生活的密切联系;在小组合作交流;2解决问题的过程中,培养学生的合作精神;教学重点 能利用三角形的全等解决实际问题; 教学难点如何灵活多样地构造全等三角形;教学方法引导发现法、启发猜想课前准备教师准备课件、
2、多媒体;学生准备练习本;课时安排1课时教学过程一、导入请你在下列各图中,以最快的速度画出一个三角形,使它与ABC全等,比比看谁快! 二、新课一位经历过战争的老人讲述了这样一个故事: 在一次战役中,我军阵地与敌军碉堡隔河相望.为了炸掉这个碉堡,需要知道碉堡与我军阵地的距离在不能过河测量又没有任何测量工具的情况下,一个战士想出来这样一个办法:为成功炸毁碉堡立了一功.这位聪明的八路军战士的方法如下:他面向碉堡的方向站好,然后调整帽子,使视线通过帽檐正好落在碉堡的底部;然后,他转过一个角度,保持刚才的姿态,这时视线落在了自己所在岸的某一点上;接着,他用步测的办法量出自己与那个点的距离,这个距离就是他与
3、碉堡间的距离(1)战士所讲述的方法中,已知条件是什么?由战士所讲述的方法可知:战士的身高AH不变,战士与地面是垂直的(AHBC);视角HAC=HAB,战士要测的是敌碉堡(B)与我军阵地(H)的距离,战士的结论是只要按要求 (如图)测得HC的长度即可.(即BH=HC)让学生说明“战士的测量方法”,并演示了“利用战士的方法”在教室中找到了与自己距离相等的两个点(他用书本当作简易的帽檐演示了一番),并说明:这一过程中,人的身高没变、人与地面垂直没变、俯视角没变。满足“角边角”条件,所以战士是利用三角形全等,根据“全等三角形的对应边相等”解决问题.战士很聪明,我要向他学习,碰到问题要多动脑,总会找到解
4、决的办法.教师总结:用数学知识解决实际问题一定要从实际出发,将其构造为确实可行的全等三角形,而不能脱离实际,穿墙测量.想一想如图,A,B 两点分别位于一个池塘的两端,小明想用绳子测量 A,B 间的距离,但绳子不够长,一个叔叔帮他出了这样一个主意: 先在地上取一个可以直接到达 A 点和B点的点C,连接 AC 并延长到 D,使CD= CA;连接BC并延长到E,使CE= CB,连接DE并测量出它的长度,DE的长度就是 A,B 间的距离. 小明是这样想的: 在ABC 和DEC 中,因为AC = DC,ACB = DCE,BC = EC,所以ABC DEC,所以 AB = DE.针对池塘问题:各组竞争展
5、示了以下五种设计方案,其他组对其方案过程,说理进行评价,补充. 三、习题1如图,小明家有一个玻璃容器,他想测量一下它的内径是多少?但是他无法将刻度尺伸进去直接测量,于是他把两根长度相等的小木条AB,CD的中点连在一起,木条可以绕中点O自由转动,这样只要测量A,C的距离,就可以知道玻璃容器的内径,你知道其中的道理吗?请说明理由 解:如图所示:连接AC,BD,在ODB和OCA中,AO=BO,AOC=BOD,CO=DO ODBOCA(SAS),BD=AC故只要测量A,C的距离,就可以知道玻璃容器的内径 四、拓展 课间,小明拿着老师的等腰三角板玩,不小心掉到两墙之间,如图, 求证:ADCCEB 证明:由题意得:AC=BC,ACB=90, ADDE,BEDE,ADC=CEB=90 ACD+BCE=90,ACD+DAC=90,BCE=DAC,在ADC和CEB中, ADC=CEB,DAC=BCE,AC=BC ADCCEB(AAS) 五、小结通过本节课的内容,你有哪些收获?1.知识 利用三角形全等测距离的目的:变不可测距离为可测距离. 依据:全等三角形的性质. 关键:构造全等三角形. 2.方法 (1)延长法构造全等三角形; (2)垂直法构造全等三角形. 专心-专注-专业
限制150内