三角函数周期的几种求法解读(共5页).doc
《三角函数周期的几种求法解读(共5页).doc》由会员分享,可在线阅读,更多相关《三角函数周期的几种求法解读(共5页).doc(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上三角函数周期的几种求法深圳市福田区皇岗中学蔡舒敏高中数学第一册第二节中涉及到函数周期的问题,学生们往往对此类的问题感到比较困难。本文就这个问题谈三角函数周期的几种求法。1定义法:定义:一般地c,对于函数,如果存在一个不为零的常数,使得当取定义域内的每一个值时,(T)()都成立,那么就把函数()叫做周期函数;不为零的常数叫做这个函数的周期。对于一个周期函数来说,如果在所有的周期中存在着一个最小的正数,就把这个最小的正数叫做最小的正周期。下面我们谈到三角函数的周期时,一般指的是三角函数折最小正周期。例1求函数y=3sin()的周期解:y=f(x)=3sin()=3sin(
2、+2) =3sin()=3sin = f(x+3)这就是说,当自变量由增加到x+3,且必增加到x+3时,函数值重复出现。函数y=3sin()的周期是T=3。例2:求f(x)=sin6x+cos6x的周期解f(x+)= sin6(x+)+ cos6(x+) = cos6x +sin6x= f(x)f(x)=sin6x+cos6x的周期为T=例3:求f(x)=的周期解:f(x+)= f(x)求f(x)=的周期:T=2公式法:(1)如果所求周期函数可化为y=Asin()、y=Acos()、tg()形成(其中A、为常数,且A0、0、R),则可知道它们的周期分别是:、。例4:求函数y=1-sinx+co
3、sx的周期解:y=1-2( sinx-cosx) =1-2(cossinx-sin cosx) =1-2sin(x-)这里=1周期T=2例5:求:y=2(sinx-cos3x)-1解:y=2(sinx-cos3x)-1 =2sin(3x-)-1这里=3 周期为T=例6:求y=tg(1+)的周期解:这里=,周期为:T=/=(2)如果f(x)是二次或高次的形式的周期函数,可以把它化成sinx、cosx、tgx的形式,再确定它的周期。例7:求f(x)=sinxcosx的周期解:f(x)=sinxcosx=sin2x这里=3,f(x)=sinxcosx的周期为T=例8:求f(x)=sin2x的周期解:
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 三角函数 周期 求法 解读
限制150内